首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extensive use of wireless mobile phones and associated communication devices has led to increasing public concern about potential biological health-related effects of the exposure to electromagnetic fields (EMFs). EMFs emitted by a mobile phone have been suggested to influence neuronal functions in the brain and affect behavior. However, the affects and phenotype of EMFs exposure are unclear. We applied radiofrequency (RF) of 835 MHz at a specific absorption rate (SAR) of 4.0 W/kg for 5 hours/day for 4 and 12 weeks to clarify the biological effects on mouse brain. Interestingly, microarray data indicated that a variety of autophagic related genes showed fold-change within small range after 835 MHz RF exposure. qRT-PCR revealed significant up-regulation of the autophagic genes Atg5, LC3A and LC3B in the striatum and hypothalamus after a 12-week RF. In parallel, protein expression of LC3B-II was also increased in both brain regions. Autophagosomes were observed in the striatum and hypothalamus of RF-exposed mice, based on neuronal transmission electron microscopy. Taken together, the results indicate that RF exposure of the brain can induce autophagy in neuronal tissues, providing insight into the protective mechanism or adaptation to RF stress.  相似文献   

2.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p<0.001). In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

3.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p < 0.001).

In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

4.
The potential health risks of radiofrequency electromagnetic fields (EMFs) emitted by mobile phones are of considerable public interest. The present study investigated the hypothesis, based on the results of our previous study, that exposure to EMFs can increase sympathetic vasoconstrictor activity. Forty healthy young males and females underwent a single-blind, placebo-controlled protocol once on each of two different days. Each investigation included successive periods of placebo and EMF exposure, given in a randomized order. The exposure was implemented by a GSM-like signal (900 MHz, pulsed with 217 Hz, 2 W) using a mobile phone mounted on the right-hand side of the head in a typical telephoning position. Each period of placebo exposure and of EMF exposure consisted of 20 min of supine rest, 10 min of 70 degrees upright tilt on a tilt table, and another 20 min of supine rest. Blood pressure, heart rate and cutaneous capillary perfusion were measured continuously. In addition, serum levels of norepinephrine, epinephrine, cortisol and endothelin were analyzed in venous blood samples taken every 10 min. Similar to the previous study, systolic and diastolic blood pressure each showed slow, continuous, statistically significant increases of about 5 mmHg during the course of the protocol. All other parameters either decreased in parallel or remained constant. However, analysis of variance showed that the changes in blood pressure and in all other parameters were independent of the EMF exposure. These findings do not support the assumption of a nonthermal influence of EMFs emitted by mobile phones on the cardiovascular autonomic nervous system in healthy humans.  相似文献   

5.
It is known that the endocrine system of experimental animals is susceptible to perturbation by radiofrequency (RF) radiation. Because of the recent interest in health and safety issues of cellular telephones, an experiment was designed to evaluate the effect of a 900 MHz RF radiation emitted by a Global System for Mobile radiotelephone (217 Hz impulses, one-eighth duty cycle, 2 W peak power) on human endocrine functions. Twenty healthy male volunteers aged from 19 to 40 were inducted in the present experiment. Each subject was exposed to RF radiation through the use of a cellular phone 2 h/day, 5 days/wk, for 1 month. Subjects were their own control. End points were serum adrenocorticotropin, thyrotropin, growth hormone, prolactin, luteinizing hormone, and follicle stimulating hormone concentrations. These end points were determined in nine weekly blood samples obtained starting 3 weeks before the commencement of the exposure and ending 2 weeks after exposures. All but one blood sample was drawn 48 h after each weekly session. The seventh drawing was performed the morning after the last weekly exposure. Within each individual, the preexposure hormone concentration was used as a control. Results indicated that all hormone concentrations remained within normal physiologic ranges. A difference was not noted among the nine weekly samples in five of six hormones studied. There was a significant change only in thyrotropin concentration, showing a 21% decrease on the seventh sampling. Because this change recovered fully during the postexposure period, it is concluded that 1 month of intermittent exposures to RF radiation from a cellular telephone does not induce a long-lasting or cumulative effect on the hormone secretion rate of the anterior pituitary gland in humans. Bioelectromagnetics 19:271–278, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The hypothesis that there exist hypersensitive persons who perceive subjective symptoms from radiofrequency (RF) fields emitted by hand held mobile phones (cellular phones) was tested using double blind provocation experiments. We also tested whether sensitive subjects are able to determine whether the phone is on or off by sensing RF fields. The study group consisted of 20 volunteers (13 women and 7 men) who reported themselves as being sensitive to cellular phones. The RF exposure sources were one analogue NMT phone (900 MHz) and two digital GSM phones (900 and 1800 MHz). The duration of a test session was 30 min, and three or four sessions were performed in random order for each subject during 1 day. The subjects were asked to report symptoms or sensations as soon as they perceived any abnormal feelings. In addition, the subjects' blood pressure, heart rate, and breathing frequency were monitored every 5 min. The results of the study indicated that various symptoms were reported, and most of them appeared in the head region. However, the number of reported symptoms was higher during sham exposure than during real exposure conditions. In addition, none of the test persons could distinguish real RF exposure from sham exposure. Hence, we conclude that adverse subjective symptoms or sensations, though unquestionably perceived by the test subjects, were not produced by cellular phones.  相似文献   

7.
A recent study raised concern about increase of resting blood pressure after a 35 min exposure to the radiofrequency (RF) field emitted by a 900 MHz cellular phone. In this randomized, double blind, placebo controlled crossover trial, 32 healthy subjects were submitted to 900 MHz (2 W), 1800 MHz (1 W) cellular phone exposure, and to sham exposure in separate sessions. Arterial blood pressure (arm cuff method) and heart rate were measured during and after the 35 min RF and sham exposure sessions. We evaluated cardiovascular responses in terms of blood pressure and heart rate during controlled breathing, spontaneous breathing, head-up tilt table test, Valsalva manoeuvre and deep breathing test. Arterial blood pressure and heart rate did not change significantly during or after the 35 min RF exposures at 900 MHz or 1800 MHz, compared to sham exposure. The results of this study indicate that exposure to a cellular phone, using 900 MHz or 1800 MHz with maximal allowed antenna powers, does not acutely change arterial blood pressure and heart rate.  相似文献   

8.
It is important to determine the possible effects of exposure to radiofrequency (RF) radiation on the genetic material of cells since damage to the DNA of somatic cells may be linked to cancer development or cell death and damage to germ cells may lead to genetic damage in next and subsequent generations. The objective of this study was to investigate whether exposure to radiofrequency radiation similar to that emitted by mobile phones of second-generation standard Global System for Mobile Communication (GSM) induces genotoxic effects in cultured human cells. The cytogenetic effects of GSM-900 MHz (GSM-900) RF radiation were investigated using R-banded karyotyping after in vitro exposure of human cells (amniotic cells) for 24 h. The average specific absorption rate (SAR) was 0.25 W/kg. The exposures were carried out in wire-patch cells (WPCs) under strictly controlled conditions of temperature. The genotoxic effect was assessed immediately or 24 h after exposure using four different samples. One hundred metaphase cells were analyzed per assay. Positive controls were provided by using bleomycin. We found no direct cytogenetic effects of GSM-900 either 0 h or 24 h after exposure. To the best of our knowledge, our work is the first to study genotoxicity using complete R-banded karyotyping, which allows visualizing all the chromosomal rearrangements, either numerical or structural.  相似文献   

9.
Biological clocks are innate timing mechanisms that regulate many behavioral and physiological parameters in most organisms. In our modern life, heavy use of mobile phones (MPs) exerts a massive stress on organisms because their electromagnetic radiation usually results in varying degrees of damage to their biological systems including the biological rhythms. In the present study, the possible effects of exposure to radiofrequency–electromagnetic radiation (RF–EMR) from MPs on two characteristic circadian rhythms, locomotor activity and melatonin hormone rhythms, were investigated. Rats were exposed to RF–EMR from MPs at 900 MHz frequency (2-h/day for 2 weeks) during nighttime (20:00–22:00 h) followed by another two weeks without exposure for recovery. Locomotor activity rhythms of the control and treated groups (n = 5/group) were daily recorded using running wheels along the experimental period. For evaluating melatonin hormone rhythm, blood samples of control and treated groups (n = 12/group), were collected at the end of exposure and recovery periods, at 6-h time intervals per day (at 4:00, 10:00, 16:00, and 22:00 h). Rats exposed to RF–EMR exhibited phase shifting as well as a significant increased acrophase level in locomotor activity. Meanwhile, a significant decrease in serum melatonin levels with retaining lower amplitude rhythmicity was observed. Ceasing exposure for two weeks did not restore melatonin levels and circadian locomotor activity rhythms. It could be concluded that, under the current conditions, exposure to RF–EMR revealed disturbances in locomotor activity and melatonin level, although they maintained rhythmicity.  相似文献   

10.
Patched1 heterozygous knockout mice (Ptc1+/-), an animal model of multiorgan tumorigenesis in which ionizing radiation dramatically accelerates tumor development, were used to study the potential tumorigenic effects of electromagnetic fields (EMFs) on neonatal mice. Two hundred Ptc1+/- mice and their wild-type siblings were enrolled in this study. Newborn mice were exposed to 900 MHz radiofrequency radiation (average SAR: 0.4 W/kg for 5 days, 0.5 h twice a day) or were sham exposed. We found that RF EMFs simulating the Global System for Mobile Communications (GSM) did not affect the survival of the mice, because no statistically significant differences in survival were found between exposed and sham-exposed animals. Also, no effects attributable to radiofrequency radiation were observed on the incidence and histology of Ptc1-associated cerebellar tumors. Moreover, the skin phenotype was analyzed to look for proliferative effects of RF EMFs on the epidermal basal layer and for acceleration of preneoplastic lesions typical of the basal cell carcinoma phenotype of this model. We found no evidence of proliferative or promotional effects in the skin from neonatal exposure to radiofrequency radiation. Furthermore, no difference in Ptc1-associated rhabdomyosarcomas was detected between sham-exposed and exposed mice. Thus, under the experimental conditions tested, there was no evidence of life shortening or tumorigenic effects of neonatal exposure to GSM RF radiation in a highly tumor-susceptible mouse model.  相似文献   

11.
Peripheral concentrations of cortisol, growth hormone and testosterone were determined in two experiments which examined the endocrine and behavioral responses of sexually mature Angus bulls to an estrous female (Experiment 1) and to female exposure 5 hours following an adrenocorticotropin (ACTH) injection (Experiment 2). Sexual activity of bulls in Experiment 1 significantly increased levels of cortisol when compared with concentrations before exposure to a female. Administration of ACTH in Experiment 2 consistently elevated levels of cortisol by 30-fold (P<0.01) when compared with pre-ACTH concentrations. This heightened level of cortisol persisted throughout the period of exposure to an estrous cow, although a gradual decline in cortisol concentrations occurred over time (P<0.05). In Experiment 1, growth hormone profiles tended to increase in response to sexual activity (P<0.10), whereas in Experiment 2, growth hormone increased in response to ACTH administration (P<0.01) and to female exposure (P<0.01). Concentrations of testosterone were unaffected (P>0.10) by mating activity in Experiment 1. In Experiment 2, acute suppression (P<0.01) in testosterone concentrations 5 hours after ACTH administration coincided with the exposure period to the estrous female. Frequencies of mounting behavious (penis extension, mounting, intromission and ejaculation) exhibited by ACTH-treated bulls were significantly lower compared with the frequencies two days earlier. Exogenous ACTH administration suppressed reproductive behaviors of bulls and altered secretion of cortisol, growth hormone and testosterone. Furthermore, these data provide evidence that specific mating behaviors of the bull can be influenced by circulating steroids.  相似文献   

12.
Widespread use of mobile phones has increased the human exposure to electromagnetic fields (EMFs). It is required to investigate the effect of EMFs on the biological systems. In this paper the effect of mobile phone RF (910 MHz and 940 MHz) on structure and function of HbA was investigated. Oxygen affinity was measured by sodium dithionite with UV–vis spectrophotometer. Structural changes were studied by circular dichroism and fluorescence spectroscopy. The results indicated that mobile phone EMFs altered oxygen affinity and tertiary structure of HbA. Furthermore, the decrease of oxygen affinity of HbA corresponded to the EMFs intensity and time of exposure.  相似文献   

13.
We have studied the non-thermal effects of radiofrequency (RF) electromagnetic fields (EMFs) on Ba(2+) currents (I Ba 2+) through voltage-gated calcium channels (VGCC), recorded in primary cultures of rat cortical neurons using the patch-clamp technique. To assess whether low-level acute RF field exposure could modify the amplitude and/or the voltage-dependence of I Ba 2+, Petri dishes containing cultured neurons were exposed for 1-3 periods of 90 s to 900 MHz RF-EMF continuous wave (CW) or amplitude-modulated according to global system mobile communication standard (GSM) during whole-cell recording. The specific absorption rates (SARs) were 2 W/kg for CW and 2 W/kg (time average value) for GSM-modulated signals, respectively. The results obtained indicate that single or multiple acute exposures to either CW or GSM-modulated 900 MHz RF-EMFs do not significantly alter the current amplitude or the current-voltage relationship of I Ba 2+, through VGCC.  相似文献   

14.
The purpose of the present study was to investigate the anti-apoptotic bcl-2 protein in rat brain and testes after whole-body exposure to radiation emitted from 900 MHz cellular phones. Two groups (sham and experimental) of Sprague-Dawley rats of eight rats each were used in the study. Exposure began approximately 10 min after transferring into the exposure cages, a period of time when rats settled down to a prone position and selected a fixed location inside the cage spontaneously. For the experimental group, the phones were in the speech condition for 20 min per day for 1 month. The same procedure was applied to the sham group rats, but the phones were turned off. Immunohistochemical staining of bcl-2 was performed according to the standardized avidin-biotin complex method. The results of this study showed that 20 min of the radiation emitted from 900 MHz cellular phones did not alter anti-apoptotic bcl-2 protein in the brain and testes of rats. We speculate that bcl-2 may not be involved in the effects of radiation on the brain and testes of rats.  相似文献   

15.
The effects of exposure to radiofrequency electromagnetic fields (RF EMFs) on cell cycle progression of mouse fibroblasts C3H 10T(1/2) and human glioma U87MG cells were determined by the flow cytometric bromodeoxyuridine pulse-chase method. Cells were exposed to a frequency-modulated continuous wave at 835.62 MHz or a code division multiple access RF EMF centered on 847.74 MHz at an average specific absorption rate of 0.6 W/kg. Five cell cycle parameters, including the transit of cells through G(1), G(2) and S phase and the probability of cell division, were examined immediately after the cells were placed in the fields or after they had been kept in the fields for up to 100 h. The only significant change observed in the study was that associated with C3H 10T(1/2) cell cultures moving into plateau phase toward the later times in the long-exposure experiment. No changes in the cell cycle parameters were observed in cells exposed to either mode of RF EMFs when compared to sham-exposed cells in either of the cell lines studied during the entire experimental period. The results show that exposure to RF EMFs, at the frequencies and power tested, does not have any effect on cell progression in vitro.  相似文献   

16.
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.  相似文献   

17.
Cellular effects of electromagnetic fields   总被引:3,自引:0,他引:3  
Studies at the cellular level are needed to reveal the cellular and molecular biological mechanisms underlying the biological effects and possible health implications of non-ionising radiation, such as extremely low frequency (ELF) magnetic fields (MFs) and radiofrequency (RF) fields. Our research group has studied the effects of 50 Hz ELF MFs (caused by power lines and electric devices) and 872 MHz or 900 MHz RFs (emitted by mobile phones and their base stations) on cellular ornithine decarboxylase activity, cell cycle kinetics, cell proliferation, and necrotic or apoptotic cell death. For RFs, pulse-modulated (217 Hz modulation frequency corresponding a global system for mobile communication-type signal) or continuous wave (unmodulated) signals were used. To expose the cell cultures to MFs or RFs, specially developed exposure systems were used, where levels of electromagnetic field exposure and the conditions of cell culture could be precisely controlled. A coexposure approach was used in many studies, i.e. the cell cultures were exposed to other stressors in addition to MFs or RFs. Ultraviolet radiation, serum deprivation, or fresh medium addition, were used as co-exposures. The results presented in this short review show that the effects of mere MFs or RF on cell culture models are quite minor, but that various co-exposure approaches warrant additional study.  相似文献   

18.
This study was designed to compare the responsiveness of adrenocorticotropin (ACTH) and cortisol secretion to corticotropin-releasing factor (CRF) in the morning and early evening in normal human subjects. Synthetic ovine CRF (1.0 micrograms/kg) or normal saline, was administered as an i.v. bolus injection to six normal males at 900 h and 1700 h. Blood samples were obtained before and 15, 30, 60, 90 and 120 min after CRF or saline injection. Significant increases in plasma ACTH and cortisol levels were observed in all subjects at the both time of testing after CRF injection. The net increments in the areas under the concentration curve (areas in the CRF experiment minus those in the saline control experiment) were not statistically different for both ACTH (mean +/- SEM: 41.0 +/- 10.6 pg/ml h in the morning: 51.1 +/- 8.9 pg/ml h in the evening) and cortisol (mean +/- SEM: 28.5 +/- 5.0 micrograms/dl h in the morning; 36.2 +/- 4.0 micrograms/dl h in the evening). Also no significant difference was observed in net increment, peak level and the ratio of peak level to the basal level of ACTH and cortisol after CRF injection. There were no appreciable changes in plasma concentrations of growth hormone, thyroid-stimulating hormone or prolactin, although slight but statistically significant rises in plasma levels of luteinizing hormone and follicle-stimulating hormone were observed. These results suggest that there is no significant difference in responsiveness of the pituitary-adrenal axis to CRF in the morning (900 h) and early evening (1700 h), and thus the time of day will not necessarily have to be considered when CRF is used between these times in a clinical test to evaluate pituitary ACTH reserve.  相似文献   

19.
Increased use of radio and microwave frequencies requires investigations of their effects on living organisms. Duckweed (Lemna minor L.) has been commonly used as a model plant for environmental monitoring. In the present study, duckweed growth and peroxidase activity was evaluated after exposure in a Gigahertz Transversal Electromagnetic (GTEM) cell to electric fields of frequencies 400, 900, and 1900 MHz. The growth of plants exposed for 2 h to the 23 V/m electric field of 900 MHz significantly decreased in comparison with the control, while an electric field of the same strength but at 400 MHz did not have such effect. A modulated field at 900 MHz strongly inhibited the growth, while at 400 MHz modulation did not influence the growth significantly. At both frequencies a longer exposure mostly decreased the growth and the highest electric field (390 V/m) strongly inhibited the growth. Exposure of plants to lower field strength (10 V/m) for 14 h caused significant decrease at 400 and 1900 MHz while 900 MHz did not influence the growth. Peroxidase activity in exposed plants varied, depending on the exposure characteristics. Observed changes were mostly small, except in plants exposed for 2 h to 41 V/m at 900 MHz where a significant increase (41%) was found. Our results suggest that investigated electromagnetic fields (EMFs) might influence plant growth and, to some extent, peroxidase activity. However, the effects of EMFs strongly depended on the characteristics of the field exposure.  相似文献   

20.
In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an “electromagnetic smog”, with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012–2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP3-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field exposure on Ca2+ signals. Our data indicate that 900 MHz GSM fields do not affect either basal Ca2+ homeostasis or provoked Ca2+ signals. Even at the highest field strengths applied, which exceed typical phone exposure levels, we did not observe any changes in cellular Ca2+ signals. We conclude that under the conditions employed in our experiments, and using a highly-sensitive assay, we could not detect any consequence of RF exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号