首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Merosin-deficient congenital muscular dystrophy is an autosomal recessive neuromuscular disorder caused by partial or total absence of laminin-2 (merosin) in the skeletal muscle. Affected children have severe weakness, hypotonia at birth, high creatine kinase (CK) levels (more than 10 times normal) and are not able to walk or stand unsupported. Linkage and mutation analysis demonstrated that the gene encoding for the laminin-alpha2 chain, mapped on chromosome 6q22-23, is invariably responsible for this form of congenital muscular dystrophy. We investigated the pattern of inheritance of the haplotypes associated with the mutated allele in 29 informative merosin-deficient families, using tightly linked informative polymorphic microsatellite markers. This allowed us to identify heterozygous individuals from normal homozygotes, who are clinically, pathologically and biochemically indistinguishable. By linkage analysis, we found a statistically significant increase in the number of heterozygous individuals carrying either the paternal or the maternal haplotypes associated with the mutated allele. This could suggest a selection in favour of the alleles carrying mutations at the laminin alpha2-chain locus.  相似文献   

3.
We report the identification of a new locus for autosomal dominant limb-girdle muscular dystrophy (LGMD1) on 7q. Two of five families (1047 and 1701) demonstrate evidence in favor of linkage to this region. The maximum two-point LOD score for family 1047 was 3.76 for D7S427, and that for family 1701 was 2.63 for D7S3058. Flanking markers place the LGMD1 locus between D7S2423 and D7S427, with multipoint analysis slightly favoring the 9-cM interval spanned by D7S2546 and D7S2423. Three of five families appear to be unlinked to this new locus on chromosome 7, thus establishing further heterogeneity within the LGMD1 diagnostic classification.  相似文献   

4.
The congenital muscular dystrophies (CMD) are a heterogeneous group of autosomal recessive disorders, which present within the first 6 months of life with hypotonia, muscle weakness and contractures, associated with dystrophic changes on skeletal muscle biopsy. We have previously reported a large consanguineous family segregating merosin-positive congenital muscular dystrophy, in which involvement of known CMD loci was excluded. A genome-wide linkage search of the family conducted using microsatellite markers spaced at 10-Mb intervals failed to identify a disease locus. A second scan using a high-density SNP array, however, permitted a novel CMD locus on 4p16.3 to be identified (multipoint LOD score 3.4). Four additional consanguineous CMD families with a similar phenotype were evaluated for linkage to a 4.14-Mb interval on 4p16.3; however, none showed any evidence of linkage to the region. Our findings further illustrate the utility of highly informative SNP arrays compared with standard panels of microsatellite markers for the mapping of recessive disease loci.  相似文献   

5.
Muscle-eye-brain disease (MEB) is an autosomal recessive disease of unknown etiology characterized by severe mental retardation, ocular abnormalities, congenital muscular dystrophy, and a polymicrogyria-pachygyria-type neuronal migration disorder of the brain. A similar combination of muscle and brain involvement is also seen in Walker-Warburg syndrome (WWS) and Fukuyama congenital muscular dystrophy (FCMD). Whereas the gene underlying FCMD has been mapped and cloned, the genetic location of the WWS gene is still unknown. Here we report the assignment of the MEB gene to chromosome 1p32-p34 by linkage analysis and homozygosity mapping in eight families with 12 affected individuals. After a genomewide search for linkage in four affected sib pairs had pinpointed the assignment to 1p, the MEB locus was more precisely assigned to a 9-cM interval flanked by markers D1S200 proximally and D1S211 distally. Multipoint linkage analysis gave a maximum LOD score of 6.17 at locus D1S2677. These findings provide a starting point for the positional cloning of the disease gene, which may play an important role in muscle function and brain development. It also provides an opportunity to test other congenital muscular dystrophy phenotypes, in particular WWS, for linkage to the same locus.  相似文献   

6.
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction theta of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability.  相似文献   

7.
Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with brain anomalies. After our initial mapping of the FCMD locus to chromosome 9q31-33, we have further defined the locus within a approximately 5-cM region between D9S127 and D9S2111 and have found linkage disequilibrium between FCMD and D9S306 in this candidate region on 9q31. The high prevalence of FCMD among the Japanese, who are a relatively isolated population, provides an opportunity to utilize linkage-disequilibrium mapping. We developed three new microsatellites, near D9S306, from the FCMD YAC contig, determined their positions on YACs, and performed linkage-disequilibrium mapping with these markers and other newly published loci. The maximum value of p(excess), which represents the strength of linkage disequilibrium, was obtained at D9S2107; and this value showed a relatively steady rise and fall across the region that is likely to contain FCMD. Distances between FCMD and each marker were presumed to be approximately 1 Mb, approximately 350 kb, approximately 140 kb, approximately 20 kb, approximately 280 kb, approximately 450 kb, and approximately 740 kb for D9S306, A107XF9, D9S2105, D9S2107, D9S172, D9S299, and D9S2109, respectively. Haplotype analysis using the three closest markers D9S2105, D9S2107, and D9S172 indicated that most FCMD-bearing chromosomes are derived from a single ancestral founder and suggested that these markers can be used for the diagnosis of sporadic FCMD. Thus, the FCMD gene is most likely to lie within a region of <100 kb containing D9S2107.  相似文献   

8.
Dilated cardiomyopathy (DCM) is a heart-muscle disease characterized by ventricular dilatation and impaired heart contraction and is heterogeneous both clinically and genetically. To date, 12 candidate disease loci have been described for autosomal dominant DCM. We report the identification of a new locus on chromosome 6q12-16 in a French family with 9 individuals affected by the pure form of autosomal dominant DCM. This locus was found by using a genomewide search after exclusion of all reported disease loci and genes for DCM. The maximum pairwise LOD score was 3.52 at recombination fraction 0.0 for markers D6S1644 and D6S1694. Haplotype construction delineated a region of 16.4 cM between markers D6S1627 and D6S1716. This locus does not overlap with two other disease loci that have been described in nonpure forms of DCM and have been mapped on 6q23-24 and 6q23. The phospholamban, malic enzyme 1-soluble, and laminin-alpha4 genes were excluded as candidate genes, using single-strand conformation polymorphism or linkage analysis.  相似文献   

9.
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromosome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction θ of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability.  相似文献   

10.
Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of childhood muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with an anomaly of the brain. After our initial mapping of the FCMD locus to chromosome 9q31-33, we further defined the locus within a region of ~5 cM between loci D9S127 and CA246, by homozygosity mapping in patients born to consanguineous marriages and by recombination analyses in other families. We also found evidence for strong linkage disequilibrium between FCMD and a polymorphic microsatellite marker, mfd220, which showed no recombination and a lod score of (Z) 17.49. A “111-bp” allele for the mfd220 locus was observed in 22 (34%) of 64 FCMD chromosomes, but it was present in only 1 of 120 normal chromosomes. This allelic association with FCMD was highly significant (χ2 =50.7; P<.0001). Hence, we suspect that the FCMD gene could lie within a few hundred kilobases of the mfd220 locus.  相似文献   

11.
Tibial muscular dystrophy (TMD) is a rare autosomal dominant distal myopathy with late adult onset. The phenotype is relatively mild: muscle weakness manifests in the patient's early 40s and remains confined to the tibial anterior muscles. Histopathological changes in muscle are compatible with muscular dystrophy, with the exception that rimmed vacuoles are a rather common finding. We performed a genomewide scan, with 279 highly polymorphic Cooperative Human Linkage Center microsatellite markers, on 11 affected individuals of one Finnish TMD family. The only evidence for linkage emerged from markers in a 43-cM region on chromosome 2q. In further linkage analyses, which included three other Finnish TMD families and which used a denser set of markers, a maximum two-point LOD score of 10.14 (recombination fraction of .05) was obtained with marker D2S364. Multipoint likelihood calculations, combined with the haplotype and recombination analyses, restricted the TMD locus to an approximately 1-cM critical chromosomal region without any evidence of heterogeneity. Since all the affecteds share one core haplotype, the dominance of one ancestor mutation is obvious in the Finnish TMD families. The disease locus that was found represents a novel muscular dystrophy locus, providing evidence for the involvement of one additional gene in the distal myopathy group of muscle disorders.  相似文献   

12.
Fukuyama-type congenital muscular dystrophy (FCMD) is an autosomal recessive severe muscular dystrophy associated with brain malformation. The gene responsible for FCMD was mapped to chromosome 9q31, a region in which convincing evidence of strong linkage disequilibrium between FCMD and mfd220 (D9S306) was recently found. FCMD is also characterized clinically by a peak motor function which, at best, allows patients to sit unassisted or slide on the buttocks. However, a small fraction of patients acquire the capacity to walk unassisted. Whether such ambulant cases belong to the FCMD spectrum or to a different disease entity has been a topic of considerable debate. We performed linkage analysis for ten families with ambulant cases using DNA markers flanking the FCMD locus. The mfd220 locus yielded a significant lod score of 3.09 for ambulant FCMD. We also found evidence for linkage disequilibrium between ambulant FCMD and mfd220. We further conducted haplotype analysis in FCMD siblings with different phenotypes, one of whom was ambulant while the other was not. The results indicate that the FCMD siblings share exactly the same haplotype at nine marker loci spanning 23.3 cM surrounding the FCMD locus. On the basis of these results, we conclude that, genetically, ambulant cases are, in fact, part of the FCMD spectrum. Received: 28 June 1996  相似文献   

13.
The genetic locus for facioscapulohumeral muscular dystrophy (FSHD) has been mapped to chromosome 4. We have examined linkage to five chromosome 4q DNA markers in 22 multigenerational FSHD families. Multipoint linkage analyses of the segregation of four markers in the FSHD families and in 40 multigenerational mapping families from the Centre d'Etude du Polymorphisme Humaine enabled these loci and FSHD to be placed in the following order: cen-D4S171-factor XI-D4S163-D4S139-FSHD-qter. One interval, D4S171-FSHD, showed significant sex-specific differences in recombination. Homogeneity tests supported linkage of FSHD to these 4q DNA markers in all of the families we studied. The position of FSHD is consistent with that generated by other groups as members of an international FSHD consortium.  相似文献   

14.
Fukuyama-type congenital muscular dystrophy (FCMD) and laminin-alpha2 deficient congenital muscular dystrophy (MDC1A) are congenital muscular dystrophies (CMDs) and they both are categorized into the same clinical entity of muscular dystrophy as Duchenne muscular dystrophy (DMD). All three disorders share a common etiologic defect in the dystrophin-glycoprotein complex, which connects muscle structural proteins with the extracellular basement membrane. To investigate the pathophysiology of these CMDs, we generated microarray gene expression profiles of skeletal muscle from patients in various clinical stages. Despite diverse pathological changes, the correlation coefficient of overall gene expression among these samples was considerably high. We performed a multi-dimensional statistical analysis, the Distillation, to extract determinant genes that distinguish CMD muscle from normal controls. Up-regulated genes were primarily extracellular matrix (ECM) components, whereas down-regulated genes included structural components of mature muscle. These observations reflect active interstitial fibrosis with less active regeneration of muscle cell components in the CMDs, characteristics that are clearly distinct from those of DMD. Although the severity of fibrosis varied among the specimens tested, ECM gene expression was consistently high without substantial changes through the clinical course. Further, in situ hybridization showed more prominent ECM gene expression on muscle cells than on interstitial tissue cells, suggesting that ECM components are induced by regeneration process rather than by 'dystrophy.' These data imply that the etiology of FCMD and MDC1A differs from that of the chronic phase of classical muscular dystrophy, and the major pathophysiologic change in CMDs might instead result from primary active fibrosis.  相似文献   

15.
Our previous studies revealed that the genetic locus for chicken muscular dystrophy of abnormal muscle (AM) mapped to chromosome 2q, and that the region showed conserved synteny with human chromosome 8q11-24.3. In the current study, we mapped the chicken orthologues of genes from human chromosome 8q11-24 in order to identify the responsible gene. Polymorphisms in the chicken orthologues were identified in the parents of the resource family. Twenty-three genes and expressed sequence tags (ESTs) were mapped to chicken chromosome 2 by linkage analysis. The detailed comparative map shows a high conservation of synteny between chicken chromosome 2q and human chromosome 8q. The AM locus was mapped between [inositol(myo)-1(or4)-monophosphatase 1] (IMPA1) gene and [core-binding factor, runt domain, alpha-subunit 2; translocated to 1; cyclin D-related] (CBFA2T1) gene. The genes located between IMPA1 and CBFA2T1 are the most likely candidates for chicken muscular dystrophy.  相似文献   

16.
Complete or partial deficiency of the laminin α2 chain of merosin has been demonstrated in a proportion of children with classical congenital muscular dystrophy and linkage to the laminin α2 chain gene (LAMA2) on chromosome 6q2 has been established. As the laminin α2 chain is also expressed in the trophoblast, its detection and linkage analysis are useful tools for prenatal diagnosis. We report our experience of seven prenatal diagnoses in families with partial deficiency or total absence of the laminin α2 chain in the muscle of the propositi. In five instances, expression of the laminin α2 chain in the trophoblast was normal and linkage data suggested that the fetuses were unaffected. In one family, the immunocytochemical studies of the trophoblast showed the absence of laminin α2, suggesting that the fetus was affected. Linkage analysis confirmed that the fetus had inherited the two at-risk haplotypes. In one family with partial laminin α2 chain deficiency, the haplotype analysis was hampered by maternal DNA contamination. Immunocytochemical analysis of chorionic villus sampling showed a reduction in laminin α2 expression. The pregnancy was presumed to be at high-risk and terminated. However, subsequent analysis of fetal DNA indicated that the fetus was probably heterozygous. Our data suggest that immunocytochemical analysis of the trophoblast can detect abnormalities in affected fetuses and gives normal results in unaffected and carrier fetuses. Nevertheless, we recommend that linkage analysis to the LAMA2 locus is also studied in all cases. Received: 2 October 1996 / Revised: 28 November 1996  相似文献   

17.
Chronic childhood-onset spinal muscular atrophy (SMA) is, after Duchenne muscular dystrophy, the most common neuromuscular disorder in childhood. Recent linkage analyses have mapped this disease to 5q12-5q14. We show that chronic SMA (Types II and III) is tightly linked to the marker locus D5S39 (Zmax = 5.47 at theta = 0.02) in eight French Canadian families. In contrast to previously published results, we do not observe close linkage between chronic SMA and D5S6 (Zmax = 0.34 at theta = 0.18) or D5S78 (Zmax = 0.25 at theta = 0.21). Last, we present a family that appears to be discordant for this localization but may represent the first example of an incompletely penetrant individual.  相似文献   

18.
Despite intensive studies of muscular dystrophy of chicken, the responsible gene has not yet been identified. Our recent studies mapped the genetic locus for abnormal muscle (AM) of chicken with muscular dystrophy to chromosome 2q using the Kobe University (KU) resource family, and revealed the chromosome region where the AM gene is located has conserved synteny to human chromosome 8q11-24.3, where the beta-1 syntrophin (SNTB1), syndecan 2 (SDC2) and Gem GTPase (GEM) genes are located. It is reasonable to assume those genes might be candidates for the AM gene. In this study, we cloned and sequenced the chicken SNTB1, SDC2 and GEM genes, and identified sequence polymorphisms between parents of the resource family. The polymorphisms were genotyped to place these genes on the chicken linkage map. The AM gene of chromosome 2q was mapped 130 cM from the distal end, and closely linked to calbindin 1 (CALB1). SNTB1 and SDC2 genes were mapped 88.5 cM distal and 27.6 cM distal from the AM gene, while the GEM gene was mapped 18.5 cM distal from the AM gene and 9.1 cM proximal from SDC2. Orthologues of SNTB1, SDC2 and GEM were syntenic to human chromosome 8q. SNTB1, SDC2 and GEM did not correspond to the AM gene locus, suggesting it is unlikely they are related to chicken muscular dystrophy. However, this result also suggests that the genes located in the proximal region of the CALB1 gene on human chromosome 8q are possible candidates for this disease.  相似文献   

19.
Limb-girdle muscular dystrophy (LGMD) is a diagnostic classification encompassing a broad group of proximal myopathies. A gene for the dominant form of LGMD (LGMD1A) has recently been localized to a 7-cM region of chromosome 5q between D5S178 and IL9. We studied three additional dominant LGMD families for linkage to these two markers and excluded all from localization to this region, providing evidence for locus heterogeneity within the dominant form of LGMD. Although the patterns of muscle weakness were similar in all families studied, the majority of affected family members in the chromosome 5–linked pedigree have a dysarthric speech pattern, which is not present in any of the five unlinked families. The demonstration of heterogeneity within autosomal dominant LGMD is the first step in attempting to subclassify these families with similar clinical phenotypes on a molecular level.  相似文献   

20.
Duane's syndrome is a congenital abnormality of eye movement, which may be inherited as an autosomal dominant trait but usually occurs sporadically. Genetic mapping in a Mexican family has recently identified a locus for Duane's syndrome within a 17.8-cM region of chromosome 2q31. The region was flanked by the microsatellite markers D2S2330 and D2S364. We performed linkage and haplotype analysis in a four-generation UK family with autosomal dominant transmission of Duane's syndrome. Linkage to 2q31 was confirmed with a maximum logarithm of differences (lod) score of 3.3 at theta = 0. The genetic interval was reduced to an 8.8-cM region between markers D2S326 and D2S364 that includes the candidate homeobox D gene cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号