首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Fly》2013,7(2):130-142
Members of the highly conserved LAMMER family of protein kinases have been described in all eukaryotes. LAMMER kinases possess markedly similar peptide motifs in their kinase catalytic subdomains that are responsible for phosphotransfer and substrate interaction, suggesting that family members serve similar functions in widely diverged species. This hypothesis is supported by their phosphorylation of SR and SR-related proteins in diverged species. Here we describe a 3-dimensional homology model of the catalytic domain of DOA, a representative LAMMER kinase, encoded by the Drosophila locus Darkener of apricot (Doa). Homology modeling of DOA based on a Sky1p template revealed a highly conserved structural framework within conserved core regions. These adopt typical kinase folding like that of other protein kinases. However, in contrast to Sky1p, some structural features, such as those in helix ?C suggest that the DOA kinase is not a constitutively active enzyme but requires activation. This may occur by phosphorylation within an activation loop that forms a broad turn and in which interactions between the side chains occur across the loop. The fold of the activation loop is stabilized through interactions with residues in the C-terminal tail, which is not part of the conserved kinase core and is variable among protein kinases. Immediately following the activation loop in the segment between the ?9 sheet and helix ?F is a P+1 loop. The electrostatic surface potential of the DOA substrate binding groove is largely negative, as it is in other known SR protein kinases, suggesting that DOA substrates must be basic. All differences between D. melanogaster and other Drosophila species are single amino acid changes situated in regions outside of any ?-helices or ?-sheets, and after modeling these had absolutely no visible effect on protein structure. The absence of evolved amino acid changes among 12 Drosophila species that would cause at least predictable changes in DOA structure indicate that evolution has already selected evolved mutations for having minimal effect on kinase structure.  相似文献   

3.
The LAMMER kinases are conserved through evolution. They play vital roles in cell growth/differentiation, development, and metabolism. One of the best known functions of the kinases in animal cells is the regulation of pre-mRNA splicing. Kic1 is the LAMMER kinase in fission yeast Schizosaccharomyces pombe. Despite the reported pleiotropic effects of kic1+ deletion/overexpression on various cellular processes the involvement of Kic1 in splicing remains elusive. In this study, we demonstrate for the first time that Kic1 not only is required for efficient splicing but also affects mRNA export, providing evidence for the conserved roles of LAMMER kinases in the unicellular context of fission yeast. Consistent with the hypothesis of its direct participation in multiple steps of pre-mRNA processing, Kic1 is predominantly present in the nucleus during interphase. In addition, the kinase activity of Kic1 plays a role in modulating its own cellular partitioning. Interestingly, Kic1 expression oscillates in a cell cycle-dependent manner and the peak level coincides with mitosis and cytokinesis, revealing a potential mechanism for controlling the kinase activity during the cell cycle. The novel information about the in vivo functions and regulation of Kic1 offers insights into the conserved biological roles fundamental to LAMMER kinases in eukaryotes.  相似文献   

4.
5.
6.
Haq R  Randall S  Midmer M  Yee K  Zanke B 《Genomics》2001,71(2):131-141
The mitogen-activated protein kinases (MAPKs) and the cyclin-dependent kinases (CDKs) are key mediators of cell proliferation in response to extracellular signals. Recent additions to each of these families and the identification of kinases with structural features of both have provided insights into fundamental processes, such as cell division and differentiation. To identify novel serine kinases with features of MAPKs or CDKs, a degenerate PCR-based amplification approach was undertaken. The 57- and 52-kDa isoforms of a novel protein kinase, termed NKIATRE, were molecularly cloned from rat brain and jejunum cDNA libraries. Like the MAPKs, NKIATRE has a Thr-Xaa-Tyr motif in kinase subdomain VIII. NKIATRE also shows close homology to the cyclin-dependent kinase class of protein kinases and the cdc2-related kinases NKIAMRE, KKIALRE, and KKIAMRE, containing both conserved inhibitory phosphorylation sites and a putative cyclin-binding domain. Two isoforms of NKIATRE that differ in their carboxy-terminal ends have been identified. A functional nuclear localization signal is specific to the longer 57-kDa alpha isoform. Sequence similarity to the putative human tumor suppressor gene NKIAMRE, which is lost in leukemic patients with chromosome 5q deletions, suggests that NKIATRE may have a role in restricting cell growth or maintaining differentiation.  相似文献   

7.
LAMMER protein kinases are ubiquitous throughout eukaryotes, including multiple paralogues in mammals. Members are characterized by similar overall structure and highly identical amino acid sequence motifs in catalytic subdomains essential for phosphotransfer and interaction with substrates. LAMMER kinases phosphorylate and regulate the activity of the SR protein class of pre-mRNA splicing components, both in vitro and in vivo. In this study, we define an optimum in vitro consensus phosphorylation site for three family members using an oriented degenerate peptide library approach. We also examine the substrate specificity and interactions of several LAMMER protein kinases from widely diverged species with potential substrates, including their own N-termini, predicted to be substrates by the peptide-based approach. Although the optimal in vitro consensus phosphorylation site for these kinases is remarkably similar for short peptides, distinct substrate preferences are revealed by in vitro phosphorylation of intact proteins. This finding suggests that these kinases may possess varied substrates in vivo, and thus the multiple LAMMER kinases present in higher eukaryotes may perform differentiable functions. These results further demonstrate that these kinases can phosphorylate a number of substrates in addition to SR proteins, suggesting that they may regulate multiple cellular processes, in addition to the alternative splicing of pre-mRNAs.  相似文献   

8.
9.
The tobacco PK12 is induced by the plant hormone ethylene and is a member of the LAMMER family of protein kinases. Members of this family contain in their C-terminus a unique 'EHLAMMERI/VLGPLP' motif of unknown function, and are related to cyclin- and mitogen-activated protein (MAP)-dependent kinases. The animal members of this class play a role in differentiation. They phosphorylate and physically interact with serine/arginine-rich (SR) splicing factors in vivo to alter their activity and the splicing of target mRNAs. SR proteins have been recently described in plants. The capability of PK12 LAMMER kinase to bind and phosphorylate SR proteins was tested in vitro by kinase and binding assays. The tobacco PK12 phosphorylated both animal and plant SR proteins and specifically interacted with the plant splicing factor atSRp34/SR1. In addition, by site-directed mutagenesis, the LAMMER motif was found to be required for PK12 kinase activity but was not necessary for substrate binding. Consistent with a role in phosphorylation of splicing factors, PK12 was found to localize to the nucleus when transiently over-expressed in suspension cells.  相似文献   

10.
NDR kinases are important for growth and differentiation and require interaction with MOB proteins for activity and function. We characterized the NDR kinases and MOB activators in Neurospora crassa and identified two NDR kinases (COT1 and DBF2) and four MOB proteins (MOB1, MOB2A, MOB2B and MOB3/phocein) that form two functional NDR–MOB protein complexes. The MOB1–DBF2 complex is not only essential for septum formation in vegetative cells and during conidiation, but also functions during sexual fruiting body development and ascosporogenesis. The two MOB2-type proteins interact with both COT1 isoforms and control polar tip extension and branching by regulating COT1 activity. The conserved region directly preceding the kinase domain of COT1 is sufficient for the formation of COT1–MOB2 heterodimers, but also for kinase homodimerization. An additional N-terminal extension that is poorly conserved, but present in most fungal NDR kinases, is required for further stabilization of both types of interactions and for stimulating COT1 activity. COT1 lacking this region is degraded in a mob-2 background. We propose a specific role of MOB3/phocein during vegetative cell fusion, fruiting body development and ascosporogenesis that is unrelated to the three other MOB proteins and NDR kinase signalling.  相似文献   

11.
12.
13.
The molecular mechanisms regulating the sexual development of malaria parasites from gametocytes to oocysts in their mosquito vector are still largely unexplored. In other eukaryotes, NIMA-related kinases (Neks) regulate cell cycle progression and have been implicated in the regulation of meiosis. Here, we demonstrate that Nek-4, a new Plasmodium member of the Nek family, is essential for completion of the sexual cycle of the parasite. Recombinant Plasmodium falciparum Nek-4 possesses protein kinase activity and displays substrate preferences similar to those of other Neks. Nek-4 is highly expressed in gametocytes, yet disruption of the nek-4 gene in the rodent malaria parasite P. berghei has no effect on gamete formation and subsequent fertilization. However, further differentiation of zygotes into ookinetes is abolished. Measurements of nuclear DNA content indicate that zygotes lacking Nek-4 fail to undergo the genome replication to the tetraploid level that precedes meiosis. Cell cycle progression in the zygote is identified as a likely precondition for its morphological transition to the ookinete and for the successful establishment of a malaria infection in the mosquito.  相似文献   

14.
The susceptibility of the mammary gland to carcinogenesis is influenced by its normal development, particularly during developmental stages such as puberty and pregnancy that are characterized by marked changes in proliferation and differentiation. Protein kinases are important regulators of proliferation and differentiation, as well as of neoplastic transformation, in a wide array of tissues, including the breast. Using a RT-PCR-based cloning strategy, we have identified 41 protein kinases that are expressed in breast cancer cell lines and in the murine mammary gland during development. The expression of each of these kinases was analyzed throughout postnatal mammary gland development as well as in a panel of mammary epithelial cell lines derived from distinct transgenic models of breast cancer. Although the majority of protein kinases isolated in this screen have no currently recognized role in mammary development, most kinases examined were found to exhibit developmental regulation. After kinases were clustered on the basis of similarities in their temporal expression profiles during mammary development, multiple distinct patterns of expression were observed. Analysis of these patterns revealed an ordered set of expression profiles in which successive waves of kinase expression occur during development. Interestingly, several protein kinases whose expression has previously been reported to be restricted to tissues other than the mammary gland were isolated in this screen and found to be expressed in the mammary gland. In aggregate, these findings suggest that the array of kinases participating in the regulation of normal mammary development is considerably broader than currently appreciated.  相似文献   

15.
Attachment of proteins to ubiquitin is reversed by specialized proteases called deubiquitinating enzymes (Dubs), which are also essential for ubiquitin precursor processing. In the genome of Saccharomyces cerevisiae, 17 potential DUB genes can be discerned. We have now constructed strains deleted for each of these genes. Surprisingly, given the essential nature of the ubiquitin system, none of the mutants is lethal or strongly growth defective under standard conditions, although a number have detectable abnormalities. Including results from this study, 14 of the 17 Dubs have now been shown to have ubiquitin-cleaving activity. The most extensively characterized yeast Dub is Doa4, which is required for both ubiquitin homeostasis and proteasome-dependent proteolysis. To help determine what distinguishes Doa4 functionally from other Dubs, we have cloned a DOA4 ortholog from the yeast Kluyveromyces lactis. The K. lactis protein is 42% identical to Doa4, but unexpectedly the K. lactis gene is slightly closer in nucleotide sequence to UBP5, which cannot substitute for DOA4 even in high dosage. The data suggest that the DOA4 locus underwent a duplication after the divergence of K. lactis and S. cerevisiae. This information will facilitate fine-structure analysis of the Doa4 protein to help delineate its key functional elements.  相似文献   

16.
To dissect the molecular and cellular basis of sexual differentiation of the teleost brain, which maintains marked sexual plasticity throughout life, we examined sex differences in neural expression of all subtypes of nuclear oestrogen and androgen receptors (ER and AR) in medaka. All receptors were differentially expressed between the sexes in specific nuclei in the forebrain. The most pronounced sex differences were found in several nuclei in the ventral telencephalic and preoptic areas, where ER and AR expression were prominent in females but almost completely absent in males, indicating that these nuclei represent female-specific target sites for both oestrogen and androgen in the brain. Subsequent analyses revealed that the female-specific expression of ER and AR is not under the direct control of sex-linked genes but is instead regulated positively by oestrogen and negatively by androgen in a transient and reversible manner. Taken together, the present study demonstrates that sex-specific target sites for both oestrogen and androgen occur in the brain as a result of the activational effects of gonadal steroids. The consequent sex-specific but reversible steroid sensitivity of the adult brain probably contributes substantially to the process of sexual differentiation and the persistent sexual plasticity of the teleost brain.  相似文献   

17.
18.
Members of the Ste20 and NDR protein kinase families are important for normal cell differentiation and morphogenesis in various organisms. We characterized POD6 (NCU02537.2), a novel member of the GCK family of Ste20 kinases that is essential for hyphal tip extension and coordinated branch formation in the filamentous fungus Neurospora crassa. pod-6 and the NDR kinase mutant cot-1 exhibit indistinguishable growth defects, characterized by cessation of cell elongation, hyperbranching, and altered cell-wall composition. We suggest that POD6 and COT1 act in the same genetic pathway, based on the fact that both pod-6 and cot-1 can be suppressed by 1) environmental stresses, 2) altering protein kinase A activity, and 3) common extragenic suppressors (ropy, as well as gul-1, which is characterized here as the ortholog of the budding and fission yeasts SSD1 and Sts5, respectively). Unlinked noncomplementation of cot-1/pod-6 alleles indicates a potential physical interaction between the two kinases, which is further supported by coimmunoprecipitation analyses, partial colocalization of both proteins in wild-type cells, and their common mislocalization in dynein/kinesin mutants. We conclude that POD6 acts together with COT1 and is essential for polar cell extension in a kinesin/dynein-dependent manner in N. crassa.  相似文献   

19.
Casein kinase I (CKI) is a member of the serine/threonine protein kinases and located in a separate group within the superfamily of eukaryotic protein kinases. CKI isoforms regulate several checkpoints of the cell cycle and meiosis. In higher eukaryotes, CKIalpha has four isoforms produced through the alternative splicing of two short inserts. Here, we report the cloning, sequencing and expression of four alternatively spliced isoforms of CKIalpha from goldfish ovary. The cloned cDNAs were 2099-3002-bp long and classified as CKIalpha, CKIalphaS, CKIalphaL and CKIalphaLS. It was revealed that two major (3.0 and 2.0 kb) messages were strongly expressed in the ovary. Four isoforms are expressed in previtellogenic to vitellogenic oocytes. In the huge nucleus of the oocyte, referred to as the germinal vesicle, CKIalphaS is dominant and CKIalphaL is expressed at a detectable level. Immunoblot analysis revealed that CKIalpha and CKIalphaS are major products in both immature and mature oocytes. These two isoforms were expressed in a tissue-dependent manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号