首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Modified forms of genes encoding green fluorescent protein (GFP) can be macroscopically detected when expressed in whole plants. This technology has opened up new uses for GFP such as monitoring transgene presence and expression in the environment once it is linked or fused to a gene of interest. When whole-plant or whole-organ GFP visualization is required, GFP should be predictably expressed and reliably fluorescent. In this study the whole plant expression and fluorescence patterns of a mGFP5er gene driven by the cauliflower mosaic virus 35S promoter was studied in intact GFP-expressing transgenic tobacco (Nicotiana tabacum cv. Xanthi). It was shown that GFP synthesis levels in single plant organs were similar to GUS activity levels from published data when driven by the same promoter. Under the control of the 35S promoter, high expression of GFP can be used to visualize stems, young leaves, flowers, and organs where the 35S promoter is most active. Modified forms of GFP could replace GUS as the visual marker gene of choice.  相似文献   

2.
通过PCR技术从三个栽培大豆(南农99-10、N2899和南农88-1)和两个野生大豆(江浦野生豆-1和ZYD4174)的基因组中分离到大豆7S蛋白α亚基基因启动子片段(7SαP),序列分析表明:7SαP片段包含多个种子特异性启动子所特有的序列元件,如RY重复序列、ACGT、AGCCCCA等,而这五个大豆材料的7SαP序列的同源性达99%。将从南农99-10中克隆的启动子片段与pBI121-GFP连接构建表达载体,经农杆菌介导转化拟南芥。Southern结果显示, 7SαP 片段和报告基因GFP以单拷贝的形式整合到拟南芥基因组中,且GFP在7SαP驱动下获得了种子特异性表达。  相似文献   

3.
4.
In order to study the feasibility of Cucumber mosaic virus (CMV) as an expression vector, the full-length cDNA of RNA 3 from strain SD was cloned and the sequence around the start codon of the coat protein (CP) gene was modified to create an Nsi I site for insertion of foreign genes. The CP gene was replaced by the green fluorescent protein (GFP) gene. The cDNAs of Fny RNAs 1 and 2 and the chimeric SD RNA 3 were cloned between the modified 35S promoter and terminator. Tobacco protoplasts were transfected with a mixture of the viral cDNAs containing 35S promoter and terminator as a replacement vector and expressed GFP. A complementation system was established when the replacement vector was inoculated onto the transgenic tobacco plants expressing SD-CMV CP. GFP was detected in the inoculated leaves in 5 of 18 tested plants and in the first upper systemic leaf of one of the 5 plants ten days after inoculation. However, no GFP could be detected in all the plants one month after inoculation. Recombination be  相似文献   

5.
6.
7.
SULTR2;1 is a low-affinity sulfate transporter expressed in the vascular tissues of roots and leaves for interorgan transport of sulfate in Arabidopsis thaliana . Transgenic Arabidopsis carrying a fusion gene construct of SULTR2;1 5'-promoter region and β-glucuronidase coding sequence (GUS) demonstrated that within the reproductive tissues, SULTR2;1 is specifically expressed in the bases and veins of siliques and in the funiculus, which connects the seeds and the silique. The antisense suppression of SULTR2;1 mRNA caused decrease of sulfate contents in seeds and of thiol contents both in seeds and leaves, as compared with the wildtype (WT). The effect of antisense suppression of SULTR2;1 on seed sulfur status was determined by introducing a sulfur-indicator construct, p35S::βSRx3:GUS, which drives the expression of GUS reporter under a chimeric cauliflower mosaic virus 35S promoter containing a triplicate repeat of sulfur-responsive promoter region of soybean β-conglycinin β subunit (βSRx3). The mature seeds of F1 plants carrying both the SULTR2;1 antisense and p35S::βSRx3:GUS constructs exhibited significant accumulation of GUS activities on sulfur deficiency, as compared with those carrying only the p35S::βSRx3:GUS construct in the WT background. These results suggested that SULTR2;1 is involved in controlling translocation of sulfate into developing siliques and may modulate the sulfur status of seeds in A. thaliana .  相似文献   

8.
9.
10.
11.
12.
13.
The Arabidopsis thaliana mutants altered sulfur response 1-1 ( asr1-1 ) and asr1-2 were isolated using the green fluorescent protein gene ( GFP ), as a marker, driven by a sulfur deficiency-responsive promoter containing the βSR fragment, which is responsible for the induction of gene expression under sulfur deficiency. In the asr1 mutants, the expression of three sulfur deficiency-responsive genes βSR-driven GFP , sulfate transporter 2;2 ( SULTR2;2 ) and adenosine-5'-phosphosulfate reductase 1 ( APR1 ) were induced in medium containing a normal sulfate concentration. The ASR1 locus was mapped to a 53-kb region on the upper arm of chromosome III; this is also the region of the BIG gene, which encodes a calossin-like protein necessary for the polar transport of auxin. The morphology of the asr1 mutants, i.e. reduced leaf size and inflorescence elongation, resembled that of big mutants. Using nucleotide sequence analysis of the BIG gene, we identified independent nonsense mutations in asr1-1 and asr1-2 . To confirm that ASR1 was BIG , we established lines of transgenic A. thaliana carrying a transfer DNA (T-DNA) insertion in the BIG gene. In these T-DNA insertion mutants, mRNA levels of βSR-driven GFP and APR1 were upregulated in normal sulfate medium. The F1 plants from crosses between asr1-1 and T-DNA insertion lines exhibited reduced leaf size and inflorescence length, indicating that ASR1 was indeed BIG . Taken together, the present results established that BIG is involved in the regulation of βSR-driven GFP and APR1 mRNA level gene expression. Indole-3-acetic acid also upregulated βSR-driven GFP and APR1 together with SULTR2;2 mRNA level, suggesting that the big effect on βSR-driven GFP and APR1 is a pleiotropic aspect of the BIG gene.  相似文献   

14.
In recent years, RNA interference has been exploited as a tool for investigating gene function in plants. We tested the potential of double-stranded RNA interference technology for silencing a transgene in the actinorhizal tree Allocasuarina verticillata. The approach was undertaken using stably transformed shoots expressing the beta-glucuronidase (GUS) gene under the control of the constitutive promoter 35S; the shoots were further transformed with the Agrobacterium rhizogenes A4RS containing hairpin RNA (hpRNA) directed toward the GUS gene, and driven by the 35S promoter. The silencing and control vectors contained the reporter gene of the green fluorescent protein (GFP), thus allowing a screening of GUS-silenced composite plantlets for autofluorescence. With this rapid procedure, histochemical data established that the reporter gene was strongly silenced in both fluorescent roots and actinorhizal nodules. Fluorometric data further established that the level of GUS silencing was usually greater than 90% in the hairy roots containing the hairpin GUS sequences. We found that the silencing process of the reporter gene did not spread to the aerial part of the composite A. verticillata plants. Real-time quantitative polymerase chain reaction showed that GUS mRNAs were substantially reduced in roots and, thereby, confirmed the knock-down of the GUS transgene in the GFP(+) hairy roots. The approach described here will provide a versatile tool for the rapid assessment of symbiotically related host genes in actinorhizal plants of the Casuarinaceae family.  相似文献   

15.
The CaMV 35S promoter is the most commonly used promoter for driving transgene expression in plants. Though it is presumed to be a constitutive promoter, some reports suggest that it is not expressed in all cell types. In addition, the information available on its expression profile in all possible cell and tissue types and during early stages of development is incomplete. We present here a detailed expression profile of this promoter investigated using the green fluorescent protein (GFP) gene as a reporter system in cotton during embryo development, and in all the vegetative and floral cell and tissue types. GFP expression was not detected during the early stages of embryogenesis. The first perceptible GFP expression was observed in a small area at the junction of hypocotyl and cotyledons in embryos at around 13 days after anthesis. The GFP fluorescence progressively became stronger and expanded throughout the cotyledon and hypocotyl as embryo development advanced. After germination, varying levels of promoter activity were observed in all cell and tissue types in the hypocotyl, cotyledon, stem, leaf, petiole, and root. The promoter was also expressed in all floral parts. Although cotton pollen exhibited a low level of greenish autofluorescence, it was possible to discern GFP-dependent fluorescence in some of the pollen from all the T0 plants examined. Developing cotton fibers also exhibited GFP fluorescence suggesting that the 35S promoter was active in these specialized epidermal cells. Thus, we show that the expression of the 35S promoter was developmentally regulated during embryogenesis and that beyond a certain stage during embryogenesis, the promoter was expressed in most cell and tissue types in cotton albeit at different levels.  相似文献   

16.
17.
18.
Alzheimer's disease (AD) brain is characterized by excess deposition of the 42-amino acid amyloid beta-peptide [A(beta)(1-42)]. AD brain is under intense oxidative stress, and we have previously suggested that A(beta)(1-42) was associated with this increased oxidative stress. In addition, we previously demonstrated that the single methionine residue of A(beta)(1-42), residue 35, was critical for the oxidative stress and neurotoxic properties of this peptide. Others have shown that the C-terminal region of A(beta)(1-42) is helical in aqueous micellar solutions, including that part of the protein containing Met35. Importantly, Cu(II)-binding induces alpha-helicity in A(beta) in aqueous solution. Invoking the i + 4 rule of helices, we hypothesized that the carbonyl oxygen of Ile31 would interact with the S atom of Met35 to change the electronic environment of the sulfur such that molecular oxygen could lead to the production of a sulfuramyl free radical on Met35. If this hypothesis is correct, a prediction would be that breaking the helical interaction of Ile31 and Met35 would abrogate the oxidative stress and neurotoxic properties of A(beta)(1-42). Accordingly, we investigated A(beta)(1-42) in which the Ile31 residue was replaced with the helix-breaking amino acid, proline. The alpha-helical environment around Met35 was completely abolished as indicated by circular dichroism (CD)-spectroscopy. As a consequence, the aggregation, oxidative stress, Cu(II) reduction, and neurotoxic properties of A(beta)(1-42)I31P were completely altered compared to native A(beta)(1-42). The results presented here are consistent with the notion that interaction of Ile31 with Met35 may play an important role in the oxidative processes of Met35 contributing to the toxicity of the peptide.  相似文献   

19.
20.
The activity of constitutive promoters was compared in transgenic alfalfa plants using two marker genes. Three promoters, the 35S promoter from cauliflower mosaic virus (CaMV), the cassava vein mosaic virus (CsVMV) promoter, and the sugarcane bacilliform badnavirus (ScBV) promoter were each fused to the beta-glucuronidase (gusA) gene. The highest GUS enzyme activity was obtained using the CsVMV promoter and all alfalfa cells assayed by in situ staining had high levels of enzyme activity. The 35S promoter was expressed in leaves, roots, and stems at moderate levels, but the promoter was not active in stem pith cells, root cortical cells, or in the symbiotic zones of nodules. The ScBV promoter was active primarily in vascular tissues throughout the plant. In leaves, GUS activity driven by the CsVMV promoter was approximately 24-fold greater than the activity from the 35S promoter and 38-fold greater than the activity from the ScBV promoter. Five promoters, the double 35S promoter, figwort mosaic virus (FMV) promoter, CsVMV promoter, ScBV promoter, and alfalfa small subunit Rubisco (RbcS) promoter were used to control expression of a cDNA from Trichoderma atroviride encoding an endochitinase (ech42). Highest chitinase activity in leaves, roots, and root nodules was obtained in plants containing the CsVMV:ech42 transgene. Plants expressing the endochitinase were challenged with Phoma medicaginis var. medicaginis, the causal agent of spring black stem and leaf spot of alfalfa. Although endochitinase activity in leaves of transgenic plants was 50- to 2650-fold greater than activity in control plants, none of the transgenic plants showed a consistent increase in disease resistance compared to controls. The high constitutive levels of both GUS and endochitinase activity obtained demonstrate that the CsVMV promoter is useful for high-level transgene expression in alfalfa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号