首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors constructed a recombinant green fluorescent protein (GFP) (PTS-GFP), which carries peroxisome targeting signal (PTS1 or PTS2) as an additional sequence, by polymerase chain reaction. The gene encoding for the recombinant GFP was constructed into an eukaryotic expression vector, and stable transformant of CHO cell expressing PTS-GFP was isolated, following the transfection of the plasmid encoding for the GFP. Each expressed PTS-GFP appeared to be localized in peroxisomes, because the GFP was observed in cellular structures, as was catalase. The observation proposed a visual screening procedure for isolating peroxisome-defective mutant. Following an enrichment of mutant cells by use of 9-(1′-pyrene)nonanol/ultraviolet irradiation (P9OH/UV) method, five peroxisome-defective mutants were isolated by pursuing the fluorescent signals from GFP. Two mutants (SK24 and SK32) were isolated from CHO cells expressing PTS1-GFP, and three mutants (PT13, PT32, and PT54) were isolated from cells expressing PTS2-GFP. Four mutants, except for PT13, showed cytosolic distributions of both PTS-GFP and catalase. On the other hand, mutant PT13 showed a cytosolic distribution on PTS2-GFP, but a peroxisomal distribution on catalase. Cell fusion analysis between SK24 mutant and other mutants indicated that PT54 mutant is in the same complementation group (CG) as SK24, but that SK32, PT13, and PT32 mutants are in different complementation group(s) from SK24.  相似文献   

2.
The plant pathogen, Xanthomonas campestris NRRL B-1459 was chromosomally tagged with gfp, and the transformant, which was subjected to Southern hybridization showed the presence of gfp in the chromosome. The virulence-related gene of the transformant was not affected by the insertion of gfp. After inoculation into cabbage plants, the infection process was visually studied in planta. Using a fluorescence microscope, the migration and distribution of gfp-labelled bacteria was visualized in real time. As the gfp-labelled cells were easily visualized from the beginning of infection, we observed a time delay of 2 days between distribution of the Xanthomonas cells in cabbage plant and the appearance of visible necrosis.  相似文献   

3.
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non‐invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH‐sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH‐sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole‐root tissues of A. thaliana is reported. The utility of pH‐sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.  相似文献   

4.
目的研究外源绿色荧光蛋白(green fluorescent protein,简称GFP)基因在BALB/c绿色荧光裸鼠主要器官组织中的表达及其差异。方法小动物成像系统和RT-PCR方法检测GFP的组织分布以及荧光表达水平情况。结果经活体荧光影像系统观察及PCR方法检测发现GFP可以在裸鼠多个器官组织中表达,其中在胰腺、心脏、全脑、皮肤、睾丸中表达量较高。结论外源绿色荧光蛋白可以在模型动物体内成功表达且稳定遗传,其中在胰腺组织中高表达。  相似文献   

5.
Ethyl 4-(4-hydroxyphenyl) methylidene- 2-methyl-5-oxoimidazolacetate (HBMIA) is a model chromophore of green fluorescent protein. The electronic structure of HBMIA in aqueous solution phase is studied using a hybrid method of quantum chemistry and statistical mechanics, RISM-SCF-SEDD. The solvatochromic shift is correctly reproduced by the present computations.  相似文献   

6.
To construct a recombinant strain of Listeria monocytogenes for the expression of heterologous genes, homologous recombination was utilized for insertional mutation, targeting its listeriolysin O gene (hly). The gene encoding green fluorescent protein (GFP) was used as the indicator of heterologous gene expression. The gene gfp was inserted into hly downstream from its promoter and signal sequence by an overlapping extension polymerase chain reaction, and was then cloned into the shuttle plasmid pKSV7 for allelic exchange with the L. monocytogenes chromosome. Homologous recombination was achieved by growing the electro-transformed L. monocytogenes cells on chloramphenicol plates at a non-permissive temperature. Sequencing analysis indicated correct insertion of the target gene in-frame with the signal sequence. The recombinant strain expressed GFP constitutively as revealed by fluorescence microscopy. The mutant strain L. monocytogenes hly-gfp lost its hemolytic activity as visualized on the blood agar or when analyzed with the culture supernatant samples. Such insertional mutation resulted in a reduced virulence of about 2 logs less than its parent strain L. monocytogenes 10403s as shown by the 50%-lethal-dose assays in the mouse and embryonated chicken egg models. These results thus demonstrate that mutated L. monocytogeues could be a potential carrier for the expression of heterologous passenger genes or could act as an indicator organism in the food industry.  相似文献   

7.
8.
Many marine organisms are luminescent. The proteins that produce the light include a primary light producer (aequorin or luciferase) and often a secondary photoprotein that red shifts the light for better penetration in the ocean. Green fluorescent protein is one such secondary protein. It is remarkable in that it autocatalyzes the formation of its own fluorophore and thus can be expressed in variety of organisms in its fluorescent form. The recent determination of its 3D structure and other physical characterizations are revealing its molecular mechanism of action  相似文献   

9.
For screening of a large number of samples for androgenic activity, a robust system with minimal handling is required. The coding sequence for human androgen receptor (AR) was inserted into expression plasmid YEpBUbi-FLAG1, resulting in the plasmid YEpBUbiFLAG-AR, and the estrogen response element (ERE) on the reporter vector YRpE2 was replaced by an androgen response element (ARE), resulting in the plasmid YRpE2-ARE. Thus, a fully functional transactivation assay system with beta-galactosidase as a reporter gene could be created. Furthermore, green fluorescent protein (GFP) was introduced as an alternative reporter gene that resulted in a simplification of the whole assay procedure. For evaluation of both reporter systems, seven steroidal compounds with known AR agonistic properties (5 alpha-dihydrotestosterone, testosterone, androstenedione, 17 alpha-methyltestosterone, progesterone, epitestosterone, and d-norgestrel) were tested, and their potencies obtained in the different assays were compared. Furthermore, potencies from the transactivation assays were compared with IC(50) values obtained in radioligand binding assays. The newly developed androgen receptor transactivation assay is a useful tool for characterizing compounds with androgenic activity.  相似文献   

10.
The bacterial ice nucleation gene inaZ confers production of ice nuclei when transferred into transgenic plants. Conditioning of the transformed plant tissue at temperatures near 0°C greatly increased the ice nucleation activity in plants, and maximum ice nucleation activity was achieved only after low-temperature conditioning for about 48 h. Although the transgenic plants contain similar amounts of inaZ mRNA at both normal and low temperatures, low temperatures are required for accumulation of INAZ protein. We propose that the stability of the INAZ protein and thus ice nucleation activity in the transgenic plants is enhanced by low-temperature conditioning.  相似文献   

11.
The use of Pichia pastoris for protein production was simplified by creation of fusion proteins containing green fluorescent protein (GFP) and the product of interest. Human interleukin-2 (hIL-2) was used as a model product: GFP enabled clear identification of fusion protein expression and, more importantly, the quantification of hIL-2. Although GFP fusions for bioprocess monitoring have been demonstrated in other hosts, this is its first use in P. pastoris.  相似文献   

12.
In contrast to the well-characterized carboxyl domain, the amino terminal half of the mature cellular prion protein has no defined structure. Here, following fusion of mouse prion protein fragments to green fluorescence protein as a reporter of protein stability, we report extreme variability in fluorescence level that is dependent on the prion fragment expressed. In particular, exposure of the extreme amino terminus in the context of a truncated prion protein molecule led to rapid degradation, whereas the loss of only six amino terminal residues rescued high level fluorescence. Study of the precise endpoints and residue identity associated with high fluorescence suggested a domain within the amino terminal half of the molecule defined by a long-range intramolecular interaction between 23KKRPKP28 and 143DWED146 and dependent upon the anti-parallel beta-sheet ending at residue 169 and normally associated with the structurally defined carboxyl terminal domain. This previously unreported interaction may be significant for understanding prion bioactivity and for structural studies aimed at the complete prion structure.  相似文献   

13.
* Green fluorescent protein (GFP) labeling of bacteria has been used to study their infection of and localization in plants, but strong autofluorescence from leaves and the relatively weak green fluorescence of GFP-labeled bacteria restrict its broader application to investigations of plant-bacterial interactions. * A stable and broad-host-range plasmid vector (pDSK-GFPuv) that strongly expresses GFPuv protein was constructed not only for in vivo monitoring of bacterial infection, localization, activity, and movement at the cellular level under fluorescence microscopy, but also for monitoring bacterial disease development at the whole-plant level under long-wavelength ultraviolet (UV) light. * The presence of pDSK-GFPuv did not have significant impact on the in vitro or in planta growth and virulence of phytobacteria. A good correlation between bacterial cell number and fluorescence intensity was observed, which allowed us to rapidly estimate the bacterial population in plant leaf tissue. We demonstrated that GFPuv-expressing bacteria can be used to screen plants that are compromised for nonhost disease resistance and Agrobacterium attachment. * The use of GFPuv-labeled bacteria has a wide range of applications in host-bacterial interaction studies and bacterial ecology-related research.  相似文献   

14.
The dark side of green fluorescent protein   总被引:1,自引:0,他引:1  
Here, severe interference of chlorophyll with green fluorescent protein (GFP) fluorescence is described for medicago (Medicago truncatula), rice (Oryza sativa) and arabidopsis (Arabidopsis thaliana). This interference disrupts the proportional relationship between GFP content and fluorescence that is intrinsic to its use as a quantitative reporter. The involvement of chlorophyll in the loss of GFP fluorescence with leaf age was shown in vivo, by the removal of chlorophyll through etiolation or by ethanol extraction, and in vitro, by titration of a GFP solution with chlorophyll solutions of various concentrations. A substantial decrease in fluorescence in early development of medicago and rice leaves correlated with chlorophyll accumulation. In all three species tested, removal of chlorophyll yielded up to a 10-fold increase in fluorescence. Loss of GFP fluorescence in vitro was 4-fold greater for chlorophyll b than for chlorophyll a. Differences exist between plant species for the discrepancy between apparent GFP fluorescence and its actual level in green tissues. Substantial errors in estimating promoter activity from GFP fluorescence can occur if pigment interference is not considered.  相似文献   

15.
The fungus Clonostachys rosea (syn. Gliocladium roseum) is a potential biocontrol agent. It can suppress the sporulation of the plant pathogenic fungus Botrytis cinerea and kill pathogenic nematodes, but the process of nematode pathogenesis is poorly understood. To help understand the underlying mechanism, we constructed recombinant strains containing a plasmid with both the enhanced green fluorescent protein gene egfp and the hygromycin resistance gene hph. Expression of the green fluorescent protein (GFP) was monitored using fluorescence microscopy. Our observations reveal that the pathogenesis started from the adherence of conidia to nematode cuticle for germination, followed by the penetration of germ tubes into the nematode body and subsequent death and degradation of the nematodes. These are the first findings on the infection process of the fungal pathogen marked with GFP, and the developed method can become an important tool for studying the molecular mechanisms of nematode infection by C. rosea. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Lin Zhang and Jinkui Yang contributed equally to this work.  相似文献   

16.
The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer duration time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.  相似文献   

17.
In neuronal cells, the mitogen-activated protein kinase (MAP kinase) cascade is an important mediator of neurotrophin signaling from cell surface receptors to the nucleus, resulting in changes in gene expression. Nuclear localization of Erk is thought to be required for these effects. To examine the mechanism and regulation of Erk nuclear translocation, we have created a green fluorescent protein (GFP)-labeled Erk2 construct, which provides a sensitive means to follow the movement of Erk from the cytoplasm to the nucleus following receptor-mediated MAP kinase activation. Using this system in PC12 cells, we have examined a number of mechanisms that have been implicated in regulating the translocation of Erk. In PC12 cells, NGF and EGF induce a rapid translocation of GFP-Erk that requires Ras and Mek. We have found that prolonged phosphorylation of Erk is not required for the rapid and early influx of Erk into the nucleus following growth factor stimulation. Furthermore, following influx, GFP-Erk rapidly returned to the cytoplasm regardless of its phosphorylation state. The release of Erk from its cytoplasmic activator, Mek, followed by the dimerization of Erk, was sufficient to stimulate nuclear uptake, whereas Erk kinase activity was dispensable. PKA activity has been reported to be required for Erk translocation in PC12 cells. However, PKA activity was also not necessary for the early translocation of Erk into the nucleus by NGF or Ras, but it was able to induce a small influx of Erk that could be measured with GFP-Erk2.  相似文献   

18.
The role of the actin cytoskeleton in plant development is intimately linked to its dynamic behavior. Therefore it is essential to continue refining methods for studying actin organization in living plant cells. The discovery of green fluorescent protein (GFP) has popularized the use of translational fusions of GFP with actin filament (F-actin) side-binding proteins to visualize in vivo actin organization in plants. The most recent of these live cell F-actin reporters are GFP fusions to the actin-binding domain 2 (ABD2) of Arabidopsis fimbrin 1 (ABD2-GFP). To improve ABD2-GFP fluorescence for enhanced in vivo F-actin imaging, transgenic Arabidopsis plants were generated expressing a construct with GFP fused to both the C- and N-termini of ABD2 under the control of the CaMV 35S promoter (35S::GFP-ABD2-GFP). The 35S::GFP-ABD2-GFP lines had significantly increased fluorescence compared with the original 35S::ABD2-GFP lines. The enhanced fluorescence of the 35S::GFP-ABD2-GFP-expressing lines allowed the acquisition of highly resolved images of F-actin in different plant organs and stages of development because of the reduced confocal microscope excitation settings needed for data collection. This simple modification to the ABD2-GFP construct presents an important tool for studying actin function during plant development.  相似文献   

19.
We generated a recombinant 96-residue polypeptide corresponding to a sequence Tyr176-Gly273 of ice nucleation protein from Pseudomonas syringae (denoted INP96). INP96 exhibited an ability to shape an ice crystal, whose morphology is highly similar to the hexagonal-bipyramid generally identified for antifreeze protein. INP96 also showed a non-linear, concentration-dependent retardation of ice growth. Additionally, circular dichroism and NMR measurements suggested a local structural construction in INP96, which undergoes irreversible thermal denaturation. These data imply that a part of INP constructs a unique structure so as to interact with the ice crystal surfaces.  相似文献   

20.
Colonization ability of the two endophytic bacteria, isolated from surface sterilized seeds of Jaisurya variety of deep-water rice viz., Pantoea sp. and Ochrobactrum sp., was compared after genetically tagging them with a constitutively expressing green fluorescent protein gene (gfp). Confocal laser scanning microscopy (CLSM) of hydroponically grown seedlings of Jaisurya rice, inoculated with gfp-tagged endophytes, revealed that both Pantoea sp. and Ochrobactrum sp. colonized the intercellular spaces in the root cortex when inoculated separately. Colonization by gfp-tagged Ochrobactrum sp. was severely inhibited when co-inoculated with an equal number (10(5) c.f.u. ml(-1)) of wild type Pantoea sp., but the converse was not true. Pantoea sp. was a more aggressive endophytic colonizer of its host than Ochrobactrum sp. The potential of using GFP reporter and CLSM as tools in evaluating competitive ability of colonization among endophytes is herewith demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号