首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plastid genomes of higher plants contain eleven reading frames (ndhA-K) that are homologous to genes encoding subunits of the mitochondrial NADH-ubiquinone-oxidoreductase (complex I). The carboxyterminal end of the NDH-H subunit from rice (Oryza sativa L.) was expressed as a fusion protein in Escherichia coli and antibodies against the fusion protein were generated in rabbits. The antibody was used to study the expression of NDH-H, and the following results were obtained: (i) NDH-H is expressed in mono- and dicotyledonous plants, (ii) NDH-H is localized on the stroma lamellae of the thylakoid membrane and (iii) NDH-H is expressed in etioplasts. Together with the finding that two other ndh genes (ndhI and ndhK) are expressed in plastids, these results point to the existence of an NAD(P)H-plastoquinone-oxidoreductase on the thylakoid membrane. The possible function of the enzyme in plastids is discussed and it is suggested that it works in balancing the ATP/ADP and the NADPH/NADP ratios during changing external (i.e. light) or internal (i.e. ATP and NADPH demands of biosynthetic pathways of the plastid) conditions.Abbreviations PVDF polyvinylidene difluoride - SDS sodium dodecyl sulfate We thank Professor M. Sugiura for the rice plastid DNA clone bank, Oliver Buchholz for Sorghum plastid membranes, Pioneer Hi-Bred Inc. for maize and Sorghum seeds and the Deutsche Forschungsgemeinschaft for financial support (SFB189).  相似文献   

2.
Potential roles for cyclic and pseudocyclic electron flow in C4 plants are to provide ATP for the C4 cycle and, under excess light, to down-regulate PS II activity through membrane energization. Intact mesophyll chloroplasts of maize were used to evaluate forms of electron transport including the Mehler peroxidase reaction (linear electron flow to O2, formation of H2O2 which is reduced by ascorbate, and linear flow linked to reduction of oxidized ascorbate). Addition of H2O2 to isolated chloroplasts in the light in the presence of an uncoupler induced Photosystem (PS) II activity, as determined from increases in photochemical quenching of chlorophyll fluorescence (qp) and the quantum yield of PS II. H2O2 also induced dissipation of energy by thylakoid membrane energization and non-photochemical fluorescence quenching (qn), which was inhibited by addition of an uncoupler. These effects of H2O2 on qp and qn were inhibited by addition of KCN, an inhibitor of ascorbate peroxidase. The results suggest that H2O2 is reduced via ascorbate, and that the oxidized ascorbate is then reduced by linear electron flow contributing to photochemistry and thylakoid membrane energization. Evidence for function of pseudocyclic electron flow via the Mehler peroxidase reaction was obtained with only oxygen as an electron acceptor, as well as in the presence of oxaloacetate a natural electron acceptor in C4 photosynthesis. KCN decreased qp and PS II yield in the absence and presence of oxaloacetate and, in the former case, it severely reduced q_n. KCN also decreased pH formation across the thylakoid membrane based on its decrease in the light-induced quenching of 9-aminoacridine fluorescence, particularly in the absence of oxaloacetate. Antimycin A, an inhibitor of cyclic electron flow, also diminished pH formation. These results provide evidence for shared energization of thylakoid membranes by the Mehler peroxidase reaction, cyclic electron flow, and linear electron flow linked to the C4 pathway.  相似文献   

3.
4.
5.
Ivanov B  Asada K  Kramer DM  Edwards G 《Planta》2005,220(4):572-581
Redox changes of the reaction-center chlorophyll of photosystem I (P700) and chlorophyll fluorescence yield were measured in bundle sheath strands (BSS) isolated from maize (Zea mays L.) leaves. Oxidation of P700 in BSS by actinic light was suppressed by nigericin, indicating the generation of a proton gradient across the thylakoid membranes of BSS chloroplasts. Methyl viologen, which transfers electrons from photosystem I (PSI) to O2, caused a considerable decrease in the reduction rate of P700+ in BSS after turning off actinic light, showing that electron flow from the acceptor side of PSI to stromal components is critical for this reduction. Ascorbate (Asc), and to a lesser extent malate (Mal), caused a lower level of P700+ in BSS under aerobic conditions in far-red light, implying electron donation from these substances to the intersystem carriers. When Asc or Mal was added to BSS during pre-illumination under anaerobic conditions in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), the far-red-induced level of P700+ was lowered. The results suggest Asc and Mal can cause reduction of stromal donors, which in turn establishes conditions for rapid PSI-driven P700+ reduction. Addition of these metabolites also strongly stimulated the development of a proton gradient in thylakoids under aerobic conditions in the absence of DCMU, i.e. under conditions analogous to those in vivo. Ascorbate was a much more effective electron donor than Mal, suggesting it has a physiological role in activation of cyclic electron flow around PSI.  相似文献   

6.
A peptide containing the N-terminal phosphorylation site (Ser-8) of Sorghum C4-phospho enolpyruvate carboxylase (PEPC) was synthesized, purified and used to raise an antiserum in rabbits. Affinity-purified IgGs prevented PEPC phosphorylation in a reconstituted in vitro assay and reacted with both the phosphorylated and dephosphorylated forms of either native or denatured PEPC in immunoblotting experiments. Saturation of dephospho-PEPC with these specific IgGs resulted in a marked alteration of its functional and regulatory properties that mimicked phosphorylation of Ser-8. A series of recombinant C4 PEPCs mutated in the N-terminal phosphorylation domain and a C3-like PEPC isozyme from Sorghum behaved similarly to their C4 counterpart with respect to these phosphorylation-site antibodies.Abbreviations PEPC phospho enolpyruvate carboxylase - PKA catalytic subunit of the cAMP-dependent protein kinase - KLH Keyhole Limpet Haemocyanin - IgG immunoglobulin G - PEP phospho enolpyruvate - SDS-PAGE sodium dodecyl sulfate, polyacrylamide gel electrophoresis - MDH malate deshydrogenase  相似文献   

7.
The aquatic monocot Hydrilla verticillata (L.f.) Royle is a well-documented facultative C4 NADP-malic enzyme species in which the C4 and Calvin cycles operate in the same cell with the specific carboxylases confined to the cytosol and chloroplast, respectively. Several key components had already been characterized at the molecular level, thus the purpose of this study was to begin to identify other, less obvious, elements that may be necessary for a functional single-cell C4 system. Using differential display, mRNA populations from C3 and C4 H. verticillata leaves were screened and expression profiles compared. From this study, 65 clones were isolated and subjected to a customized macroarray analysis; 25 clones were found to be upregulated in C4 leaves. Northern and semi-quantitative RT-PCR analyses were used for confirmation. From these screenings, 13 C4 upregulated genes were identified. Among these one encoded a previously recognized C4 phosphoenolpyruvate carboxylase, and two encoded distinct pyruvate orthophosphate dikinase isoforms, new findings for H. verticillata. Genes that encode a transporter, an aminotransferase and two chaperonins were also upregulated. Twelve false positives, mostly housekeeping genes, were determined from the Northern/semi-quantitative RT-PCR analyses. Sequence data obtained in this study are listed in the dbEST database (DV216698 to DV216767). As a single-cell C4 system that lacks Kranz anatomy, a better understanding of how H. verticillata operates may facilitate the design of a transgenic C4 system in a C3 crop species.Srinath K. Rao and Hiroshi Fukayama contributed equally to this study.  相似文献   

8.
Bundle sheath chloroplasts of NADP-malic enzyme (NADP-ME) type C4 species have a high demand for ATP, while being deficient in linear electron flow and oxidation of water by photosystem II (PSII). To evaluate electron donors to photosystem I (PSI) and possible pathways of cyclic electron flow (CEF1) in isolated bundle sheath strands of maize (Zea mays L.), an NADP-ME species, light-induced redox kinetics of the reaction center chlorophyll of PSI (P700) were followed under aerobic conditions. Donors of electrons to CEF1 are needed to compensate for electrons lost from the cycle. When stromal electron donors to CEF1 are generated during pre-illumination with actinic light (AL), they retard the subsequent rate of oxidation of P700 by far-red light. Ascorbate was more effective than malate in generating stromal electron donors by AL. The generation of stromal donors by ascorbate was inhibited by DCMU, showing ascorbate donates electrons to the oxidizing side of PSII. The inhibitors of NADPH dehydrogenase (NDH), amytal and rotenone, accelerated the oxidation rate of P700 by far-red light after AL, indicating donation of electrons to the intersystem from stromal donors via NDH. These inhibitors, however, did not affect the steady-state level of P700+ under AL, which represents a balance of input and output of electrons in P700. In contrast, antimycin A, the inhibitor of the ferredoxin-plastoquinone reductase-dependent CEF1, substantially lowered the level of P700+ under AL. Thus, the primary pathway of ATP generation by CEF1 may be through ferredoxin-plastoquinone, while function of CEF1 via NDH may be restricted by low levels of ferredoxin-NADP reductase. NDH may contribute to redox poising of CEF1, or function to generate ATP in linear electron flow to O2 via PSI, utilizing NADPH generated from malate by chloroplastic NADP-ME.  相似文献   

9.
In order to study the location of enzymes of photorespiration in leaves of the C3–C4 intermediate species Moricandia arvensis (L.). DC, protoplast fractions enriched in mesophyll or bundlesheath cells have been prepared by a combination of mechanical and enzymic techniques. The activities of the mitochondrial enzymes fumarase (EC 4.2.1.2) and glycine decarboxylase (EC 2.1.2.10) were enriched by 3.0- and 7.5-fold, respectively, in the bundle-sheath relative to the mesophyll fraction. Enrichment of fumarase is consistent with the larger number of mitochondria in bundle-sheath cells relative to mesophyll cells. The greater enrichment of glycine decarboxylase indicates that the activity is considerably higher on a mitochondrial basis in bundle-sheath than in mesophyll cells. Serine hydroxymethyltransferase (EC 2.1.2.1) activity was enriched by 5.3-fold and glutamate-dependent glyoxylate-aminotransferase (EC 2.6.1.4) activity by 2.6-fold in the bundle-sheath relative to the mesophyll fraction. Activities of serine- and alanine-dependent glyoxylate aminotransferase (EC 2.6.1.45 and EC 2.6.1.4), glycollate oxidase (EC 1.1.3.1), hydroxypyruvate reductase (EC 1.1.1.81), glutamine synthetase (EC 6.3.1.2) and phosphoribulokinase (EC 2.7.1.19) were not significantly different in the two fractions. These data provide further independent evidence to complement earlier immunocytochemical studies of the distribution of photorespiratory enzymes in the leaves of this species, and indicate that while mesophyll cells of M. arvensis have the capacity to synthesize glycine during photorespiration, they have only a low capacity to metabolize it. We suggest that glycine produced by photorespiratory metabolism in the mesophyll is decarboxylated predominantly by the mitochondria in the bundle sheath.Abbreviation RuBP ribulose 1,5-bisphosphate  相似文献   

10.
The cellular localization of the enzymes involved in primary nitrogen assimilation was investigated following separation of mesophyll protoplasts and bundle-sheath cells of maize (Zea mays L.) leaves. Determination of the enzymatic activities in the two types of cell revealed that nitrate and nitrite reductase are principally located in the mesophyll cells whereas glutamine synthetase (GS) and ferredoxin-dependent glutamate synthase (Fd-GOGAT) are present in both tissues with a preferential location in the bundle-sheath strands. In order to confirm the results obtained by this conventional biochemical method we have used an in-situ immunofluorescence technique to unambiguously localize GS and Fd-GOGAT at the cellular level. Thin-sectioned maize leaves treated with specific GS and Fd-GOGAT antisera followed by conjugation with fluorescein-isothiocyanate-labelled sheep anti-rabbit immunoglobulins clearly show that GS is equally distributed within the leaf whereas Fd-GOGAT is mostly present in the chloroplasts of the bundle-sheath cells. The cellular localization of nitrate reductase, nitrite reductase, GS-2 and Fd-GOGAT in maize leaf cell types strongly indicates that primary nitrogen assimilation functions in the mesophyll cells while photorespiratory nitrogen recycling is restricted to the bundle-sheath cells.  相似文献   

11.
Robert T. Furbank 《Planta》1988,176(4):433-440
The relationship between the redox state of the primary electron acceptor of photosystem II (QA) and the rate of O2 evolution in isolated mesophyll chloroplasts from Zea mays L. is examined using pulse-modulated chlorophyll a fluorescence techniques. A linear relationship between photochemical quenching of chlorophyll fluorescence (qQ) and the rate of O2 evolution is evident under most conditions with either glycerate 3-phosphate or oxaloacetate as substrates. There appears to be no effect of the transthylakoid pH gradient on the rate of electron transfer from photosystem II into QA in these chloroplasts. However, the proportion of electron transport occurring through cyclic-pseudocyclic pathways relative to the non-cyclic pathway appears to be regulated by metabolic demand for ATP. The majority of non-photochemical quenching in these chloroplasts at moderate irradiances appeared to be energy-dependent quenching.Abbreviations and symbols PSII photosystem II - Fm maximum fluorescence obtained on application of a saturating light pulse - Fo basal fluorescence recorded in the absence of actinic light (i.e. all PSII traps are open) - Fv Fm-Fo - qQ photochemical quenching - qNP non-photochemical quenching - qE energy-dependent quenching of chlorophyll fluorescence  相似文献   

12.
13.
The activities of electron transport are compared between wild-type Arabidopsis and two Arabidopsis mutants deficient for the chloroplastic NAD(P)H dehydrogenase (NDH) which catalyzes cyclic electron transport around photosystem I. The quantum yield of photosystem II and the degree of non-photochemical quenching of chlorophyll fluorescence were of similar levels in the two NDH-deficient mutants and the wild type under non-stressed standard growth conditions. Stromal over-reduction was induced in Arabidopsis NDH mutants with high light treatment, as is the case in tobacco NDH mutants. However, unlike tobacco mutants, photoinhibition was not observed in the Arabidopsis NDH mutants.  相似文献   

14.
The role of NAD(P)H dehydrogenase (NDH)-dependent cyclic electron flow around photosystem I in photosynthetic regulation and plant growth at several temperatures was examined in rice (Oryza sativa) that is defective in CHLORORESPIRATORY REDUCTION 6 (CRR6), which is required for accumulation of sub-complex A of the chloroplast NDH complex (crr6). NdhK was not detected by Western blot analysis in crr6 mutants, resulting in lack of a transient post-illumination increase in chlorophyll fluorescence, and confirming that crr6 mutants lack NDH activity. When plants were grown at 28 or 35°C, all examined photosynthetic parameters, including the CO(2) assimilation rate and the electron transport rate around photosystems I and II, at each growth temperature at light intensities above growth light (i.e. 800 μmol photons m(-2) sec(-1)), were similar between crr6 mutants and control plants. However, when plants were grown at 20°C, all the examined photosynthetic parameters were significantly lower in crr6 mutants than control plants, and this effect on photosynthesis caused a corresponding reduction in plant biomass. The F(v)/F(m) ratio was only slightly lower in crr6 mutants than in control plants after short-term strong light treatment at 20°C. However, after long-term acclimation to the low temperature, impairment of cyclic electron flow suppressed non-photochemical quenching and promoted reduction of the plastoquinone pool in crr6 mutants. Taken together, our experiments show that NDH-dependent cyclic electron flow plays a significant physiological role in rice during photosynthesis and plant growth at low temperature.  相似文献   

15.
C4 photosynthesis is a biochemical pathway that operates across mesophyll and bundle sheath (BS) cells to increase CO2 concentration at the site of CO2 fixation. C4 plants benefit from high irradiance but their efficiency decreases under shade, causing a loss of productivity in crop canopies. We investigated shade acclimation responses of Setaria viridis, a model monocot of NADP-dependent malic enzyme subtype, focussing on cell-specific electron transport capacity. Plants grown under low light (LL) maintained CO2 assimilation rates similar to high light plants but had an increased chlorophyll and light-harvesting-protein content, predominantly in BS cells. Photosystem II (PSII) protein abundance, oxygen-evolving activity and the PSII/PSI ratio were enhanced in LL BS cells, indicating a higher capacity for linear electron flow. Abundances of PSI, ATP synthase, Cytochrome b6f and the chloroplast NAD(P)H dehydrogenase complex, which constitute the BS cyclic electron flow machinery, were also increased in LL plants. A decline in PEP carboxylase activity in mesophyll cells and a consequent shortage of reducing power in BS chloroplasts were associated with a more oxidised plastoquinone pool in LL plants and the formation of PSII – light-harvesting complex II supercomplexes with an increased oxygen evolution rate. Our results suggest that the supramolecular composition of PSII in BS cells is adjusted according to the redox state of the plastoquinone pool. This discovery contributes to the understanding of the acclimation of PSII activity in C4 plants and will support the development of strategies for crop improvement, including the engineering of C4 photosynthesis into C3 plants.  相似文献   

16.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

17.
18.
19.
The characteristics of oscillations in photosynthetic carbon fixation and chlorophyll fluorescence in leaves of the C4 plant Amaranthus caudatus L. were compared to those shown by the C3 plant Spinacia oleracea L. As in spinach, oscillations could be observed in Amaranthus when leaves were illuminated after periods of darkening, particularly at temperatures below 20°C, less so or not at all at higher temperatures. However, in contrast to spinach, pronounced oscillations occurred in Amaranthus after a sudden dark/light transition only at low, not at high photon flux densities. Whereas in spinach maxima in carbon uptake were observed slightly after minima in chlorophyll fluorescence had occurred, in Amaranthus maxima in carbon uptake were close to maxima in chlorophyll fluorescence. Since the quantum efficiency of electron transport through photosystem II of the chloroplast electron-transport chain was higher during the minima of chlorophyll fluorescence than during the maxima, the observations suggest that in Amaranthus photosynthetic water oxidation did not occur as synchronously with carbon uptake as in spinach. It is proposed that, in contrast to spinach, photosynthetic oscillations in Amaranthus are related to the diffusional transport of photosynthetic intermediates between mesophyll and bundle-sheath cells.Abbreviations Fo, Fm, Fs initial, maximal and steady-state chlorophyll a fluorescence - PFD photon flux density - QA primary quinone acceptor of PSII We are grateful to Professors D.A. Walker, FRS, Robert Hill Institute, University of Sheffield, Sheffield, UK., and Agu Laisk, Chair of Plant Physiology, University of Tartu, Tartu, Estonia, for helpful discussions and to Ms. S. Neimanis for help with the experiments. Our work was performed within the research of the Sonderforschungsbereich 251 of the University of Würzburg. It was supported by the Stiftung Volkswagenwerk. A.S.R. acknowledges also support by the Alexander-von-Humboldt-Stiftung and U.G. by the Graduate College of the University of Würzburg.  相似文献   

20.
Chloroplastic NADP+-malate dehydrogenase (cpMDH, EC 1.1.1.82) is a key enzyme in the carbonfixation pathway of some C4 plants such as the monocotyledons maize or Sorghum. We have expressed cpMDH from Sorghum vulgare Pers. in transgenic tobacco (Nicotiana tabacum L.) (a dicotyledonous C3 plant) by using a gene composed of the Sorghum cpMDH cDNA under the control of cauliflower mosaic virus 35S promoter. High steady-state levels of cpMDH mRNA were observed in isogenic dihaploid transgenic tobacco lines. Sorghum cpMDH protein was detected in transgenic leaf extracts, where a threefold higher cpMDH activity could be measured, compared with control tobacco leaves. The recombinant protein was identical in molecular mass and in N-terminal sequence to Sorghum cpMDH. The tobacco cpMDH protein which has a distinct N-terminal sequence, could not be detected in transgenic plants. Immunocytochemical analyses showed that Sorghum cpMDH was specifically localized in transgenic tobacco chloroplasts. These data indicate that Sorghum cpMDH preprotein was efficiently synthesized, transported into and processed in tobacco chloroplasts. Thus, C3-C4 photosynthesis specialization or monocotyledon-dicotyledon evolution did not affect the chloroplastic proteinimport machinery. The higher levels of cpMDH in transgenic leaves resulted in an increase of l-malate content, suggesting that carbon metabolism was altered by the expression of the Sorghum enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号