共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A Comprehensive Study of Genic Variation in Natural Populations of Drosophila Melanogaster. VI. Patterns and Processes of Genic Divergence between D. Melanogaster and Its Sibling Species, Drosophila Simulans 下载免费PDF全文
We present here an extensive set of data on allelic differences between homologous proteins of Drosophila melanogaster and its sibling species, Drosophila simulans, obtained by nondenaturing one-dimensional, and denaturing two-dimensional gel electrophoresis. The data suggest that, for these two species, (1) approximately 10% of protein-coding loci have no alleles in common in our sample, (2) the extent of genic variation at a locus (mean heterozygosity) within a species is not correlated with the extent of divergence (Nei's genetic distance) at that locus between species, and (3) significant heterogeneity of divergence rates exists for different structural/functional classes of loci. These results are discussed in the context of the dynamics of genetic variation within and between species. 相似文献
4.
Wolbachia are endosymbiotic bacteria, widespread in terrestrial Arthropods. They are mainly transmitted vertically, from mothers to offspring and induce various alterations of their hosts' sexuality and reproduction, the most commonly reported phenomenon being Cytoplasmic Incompatibility (CI), observed in Drosophila melanogaster and D. simulans. Basically, CI results in a more or less intense embryonic mortality, occurring in crosses between males infected by Wolbachia and uninfected females. In D. simulans, Wolbachia and CI were observed in 1986. Since then, this host species has become a model system for investigating the polymorphism of Wolbachia infections and CI. In this review we describe the different Wolbachia infections currently known to occur in D. melanogaster and D. simulans. The two species are highly contrasting with regard to symbiotic diversity: while five Wolbachia variants have been described in D. simulans natural populations, D. melanogaster seems to harbor one Wolbachia variant only. Another marked difference between these two Drosophila species is their permissiveness with regard to CI, which seems to be fully expressed in D. simulans but partially or totally repressed in D. melanogaster, demonstrating the involvement of host factors in the control of CI levels. The potential of the two host species regarding the understanding of CI and its evolution is also discussed. 相似文献
5.
Repression of Hybrid Dysgenesis in Drosophila Melanogaster by Individual Naturally Occurring P Elements 总被引:5,自引:2,他引:5 下载免费PDF全文
Individual P elements that were genetically isolated from wild-type strains were tested for their abilities to repress two aspects of hybrid dysgenesis: gonadal dysgenesis and mutability of a double-P element-insertion allele of the singed locus (sn(w)). These elements were also characterized by Southern blotting, polymerase chain reaction amplification and DNA sequencing. Three of the elements were 1.1-kb KP elements, one was a 1.2-kb element called D50, and one was a 0.5-kb element called SP. These three types of elements could encode polypeptides of 207, 204, and 14 amino acids, respectively. Gonadal dysgenesis was repressed by two of the KP elements (denoted KP(1) and KP(6)) and by SP, but not by the third KP element (KP(D)), nor by D50. Repression of gonadal dysgenesis was mediated by a maternal effect, or by a combination of zygotic and maternal effects generated by the P elements themselves. The mutability of sn(w) was repressed by the KP(1) and KP(6) elements, by D50 and by SP, but not by KP(D); however, the SP element repressed sn(w) mutability only when the transposase came from complete P elements and the D50 element repressed it only when the transposase came from the modified P element known as Δ2-3. In all cases, repression of sn(w) mutability appeared to be mediated by a zygotic effect of the isolated P element. Each of the isolated elements was also tested for its ability to suppress the phenotype of a P-insertion mutation of the vestigial locus (vg(21-3)). D50 was a moderate suppressor whereas SP and the three KP elements had little or no effect. These results indicate that each isolated P element had its own profile of repression and suppression abilities. It is suggested that these abilities may be mediated by P-encoded polypeptides or by antisense P RNAs initiated from external genomic promoters. 相似文献
6.
Molecular Variation at the Vermilion Locus in Geographically Diverse Populations of Drosophila Melanogaster and D. Simulans 总被引:1,自引:6,他引:1
We surveyed nucleotide variation at vermilion in population samples of Drosophila melanogaster from Africa, Asia and the Americas to test the hypothesis that the vermilion gene was a target of balancing selection and to improve our understanding of geographic differentiation. Patterns of polymorphism and divergence showed no evidence for non-neutral evolution. However, the frequency spectrum of polymorphic sites in some non-African samples departed from the neutral equilibrium expectation. Furthermore, there were high levels of linkage disequilibrium in non-African samples, despite apparently high rates of crossing over in the vermilion region. In the absence of comparable data from other loci in these same population samples, we cannot determine whether the unusual patterns of variation at vermilion reflect demographic as opposed to locus-specific events. We found surprisingly high levels of differentiation at vermilion between U.S. and Congo samples of D. simulans. In light of previously published allozyme and mtDNA data that provided no evidence for significant differentiation between African and non-African D. simulans populations, the vermilion data raise the possibility that both mtDNA and allozymes have been influenced by selection. 相似文献
7.
We summarize data showing that there is population structure in African populations of Drosophila from the melanogaster-simulans complex. In D. melanogaster, population structuring is found at individual loci, but is obscured by population structuring for large inversions that simultaneously affect several loci. In D. simulans, molecular polymorphism at the X-linked vermilion locus suggests that different groups of populations have been geographically isolated for some time. Invading populations are probably derived from different areas in Africa. European populations originate from an east African population that was probably not at a demographic equilibrium. The origin of the Antilles population is apparently different and is as yet unknown. In south-western France, populations from these two species undergo different population structuring at the scale of a few kilometres: D. melanogaster makes up a large panmictic population, whereas D. simulans forms a metapopulation that is divided into smaller demes. 相似文献
8.
9.
Nucleotide Variation and Divergence in the Histone Multigene Family in Drosophila Melanogaster 总被引:1,自引:2,他引:1 下载免费PDF全文
Nucleotide differences in the histone H3 gene family in Drosophila melanogaster were studied on three levels: (1) within a chromosome, (2) within a population and (3) between species (D. melanogaster and Drosophila simulans). The average difference within the H3 gene within a chromosome was 0.0040 per nucleotide site, about 52% of that within a population (0.0077). The proportion of divergent sites between the two species was 0.0575, which is about 8.5 times the difference within a species. The distribution of divergence between species was similar to that of variation within a species. Divergence and variation were noted to be greatest in the 3' noncoding region and least in the coding region. Values intermediate between these were found for the 5' noncoding region. Divergence and variation in silent sites exceeded those in the total coding region, thus indicating possible purifying selection for amino-acid-altering change. Phylogenetic relations among H3 genes and genetic differences on these three levels are evidence for the concerted evolution of the histone gene family. The molecular mechanism by which variation is produced and maintained is discussed. 相似文献
10.
The Effect of DNA Sequence Polymorphisms on Intragenic Recombination in the Rosy Locus of Drosophila Melanogaster 总被引:4,自引:3,他引:4 下载免费PDF全文
The effect of simple DNA sequence polymorphisms on intragenic recombination in the rosy locus of Drosophila melanogaster was assayed. Two crosses were performed involving nearly identical molecular distances between selective ry null mutations (3778 nucleotides and 3972 nucleotides). In one heterozygote (ry606/ry531), in addition to the nucleotide substitution ry- mutations, there were 11 simple nucleotide polymorphisms between the selective markers as well as additional flanking simple nucleotide polymorphisms within the rosy locus. In the other heterozygote (ry606/ry609), there were no additional polymorphisms because the two rosy nucleotide substitution mutations were induced on the same rosy isoallele (ry+6). From ry606/ry531 heterozygous females, 27 intragenic crossovers and five marker conversions were seen among 4.53 x 10(5) progeny. From ry606/ry609 heterozygous females, 23 intragenic crossovers and eight marker conversions were seen among 4.18 x 10(5) progeny. The intragenic crossover frequencies per kilobase of DNA were very similar, 1.6 x 10(-5) for ry606/ry531 and 1.4 x 10(-5) for ry606/ry609. Thus, simple DNA sequence polymorphisms neither inhibit nor promote intragenic recombination in D. melanogaster. 相似文献
11.
Genetics of Differences in Pheromonal Hydrocarbons between Drosophila Melanogaster and D. Simulans 总被引:2,自引:0,他引:2 下载免费PDF全文
J. A. Coyne 《Genetics》1996,143(1):353-364
Females of Drosophila melanogaster and its sibling species D. simulans have very different cuticular hydrocarbons, with the former bearing predominantly 7,11-heptacosadiene and the latter 7-tricosene. This difference contributes to reproductive isolation between the species. Genetic analysis shows that this difference maps to only the third chromosome, with the other three chromosomes having no apparent effect. The D. simulans alleles on the left arm of chromosome 3 are largely recessive, allowing us to search for the relevant regions using D. melanogaster deficiencies. At least four nonoverlapping regions of this arm have large effects on the hydrocarbon profile, implying that several genes on this arm are responsible for the species difference. Because the right arm of chromosome 3 also affects the hydrocarbon profile, a minimum of five genes appear to be involved. The large effect of the thrid chromosome on hydrocarbons has also been reported in the hybridization between D. simulans and its closer relative D. sechellia, implying either an evolutionary convergence or the retention in D. sechellia of an ancestral sexual dimorphism. 相似文献
12.
Historical Selection, Amino Acid Polymorphism and Lineage-Specific Divergence at the G6pd Locus in Drosophila Melanogaster and D. Simulans 总被引:2,自引:0,他引:2 下载免费PDF全文
W. F. Eanes M. Kirchner J. Yoon C. H. Biermann I. N. Wang M. A. McCartney B. C. Verrelli 《Genetics》1996,144(3):1027-1041
The nucleotide diversity across 1705 bp of the G6pd gene is studied in 50 Drosophila melanogaster and 12 D. simulans lines. Our earlier report contrasted intraspecific polymorphism and interspecific differences at silent and replacement sites in these species. This report expands the number of European and African lines and examines the pattern of polymorphism with respect to the common A/B allozymes. In D. melanogaster the silent nucleotide diversity varies 2.8-fold across localities. The B allele sequences are two- to fourfold more variable than the derived A allele, and differences between allozymes are twice as among B alleles. There is strong linkage disequilibrium across the G6pd region. In both species the level of silent polymorphism increases from the 5' to 3' ends, while there is no comparable pattern in level of silent site divergence or fixation. The neutral model is not rejected in either species. Using D. yakuba as an outgroup, the D. melanogaster lineage shows a twofold greater rate of silent fixation, but less than half the rate of amino acid replacement. Lineage-specific differences in mutation fixation are inconsistent with neutral expectations and suggest the interaction of species-specific population size differences with both weakly advantageous and deleterious selection. 相似文献
13.
14.
The Rosy Locus in Drosophila Melanogaster: Xanthine Dehydrogenase and Eye Pigments 总被引:1,自引:0,他引:1 下载免费PDF全文
The rosy gene in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase (XDH). Mutants that have no enzyme activity are characterized by a brownish eye color phenotype reflecting a deficiency in the red eye pigment. Xanthine dehydrogenase is not synthesized in the eye, but rather is transported there. The present report describes the ultrastructural localization of XDH in the Drosophila eye. Three lines of evidence are presented demonstrating that XDH is sequestered within specific vacuoles, the type II pigment granules. Histochemical and antibody staining of frozen sections, as well as thin layer chromatography studies of several adult genotypes serve to examine some of the factors and genic interactions that may be involved in transport of XDH, and in eye pigment formation. While a specific function for XDH in the synthesis of the red, pteridine eye pigments remains unknown, these studies present evidence that: (1) the incorporation of XDH into the pigment granules requires specific interaction between a normal XDH molecule and one or more transport proteins; (2) the structural integrity of the pigment granule itself is dependent upon the presence of a normal balance of eye pigments, a notion advanced earlier. 相似文献
15.
Naturally Occurring Enzyme Activity Variation in DROSOPHILA MELANOGASTER. I. Sources of Variation for 23 Enzymes 总被引:9,自引:7,他引:2 下载免费PDF全文
The genetic component of variation of enzyme activity levels in Drosophila melanogaster was investigated by using 48 second- and 48 third-chromosome isogenic substitution lines derived from natural populations. The results confirm those of our earlier experiments with the same lines and extend them to a number of additional enzymes. All 23 enzymes show a significant genetic component to the variation in one or both sets of lines and only a small part of this variation is accounted for by variation among the lines in the amount of tissue per fly. The magnitude of line effects is, in most cases, considerably larger than the magnitude of environmental and measurement error effects, and the line effects are approximately continuous in distribution. Variation in the geographic origin and karyotype of the chromosomes generally does not contribute to the line component of variation, but allozymes provide an important source of variation for a few of the enzymes. Many of the enzymes show evidence for variation of activity modifiers that are not linked to the structural locus of the enzyme. 相似文献
16.
17.
Molecular and Phenotypic Variation of the Zw Locus Region in Drosophila Melanogaster 总被引:2,自引:3,他引:2 下载免费PDF全文
N. T. Miyashita 《Genetics》1990,125(2):407-419
Restriction map polymorphism in a 13-kb region of the Zw locus in Drosophila melanogaster was investigated for 64 X chromosome lines with seven 6-cutter and ten 4-cutter restriction enzymes. A total of 203 restriction sites were scored, of which 20 were found to be polymorphic. The estimated nucleotide variation for this region for overall data (pi = 0.003 and 0.001, and theta = 0.003 and 0.002, for 4-cutter and 6-cutter studies, respectively) was smaller than that reported for most regions studied in D. melanogaster. It was found that the Slow allozyme has a larger nucleotide variation and haplotype diversity than the Fast allozyme. Results suggest the relatively recent divergence of the Fast allozyme from the Slow allozyme. Glucose 6-phosphate dehydrogenase (G6PD) activity was measured as a phenotype of the Zw locus. A significant difference in G6PD activity between allozymes was detected. The between-line effect was highly significant within the Slow allozyme, but was not significant within the Fast allozyme. Although a direct causative link could not be established, these results suggest an association between the amounts of quantitative and molecular genetic variation at the Zw locus region. 相似文献
18.
19.
20.
Lack of Underdominance in a Naturally Occurring Pericentric Inversion in Drosophila Melanogaster and Its Implications for Chromosome Evolution 下载免费PDF全文
In(2LR)PL is a large pericentric inversion polymorphic in populations of Drosophila melanogaster on two Indian Ocean islands. This polymorphism is puzzling: because crossing over in female heterokaryotypes produces inviable zygotes, such inversions are thought to be underdominant and should be quickly eliminated from populations. The observed fixation for such inversions among related species has led to the idea that genetic drift can cause chromosome evolution in opposition to natural selection. We found, however, that In(2LR)PL is not underdominant for fertility, as heterokaryotypic females produce perfectly viable eggs. Genetic analysis shows that the lack of underdominance results from the nearly complete absence of crossing over in the inverted region. This phenomenon is probably caused by mechanical and not genetic factors, because crossing over is not suppressed in In(2LR)PL homokaryotypes. Our observations do not support the idea that the fixation of pericentric inversions among closely related species implies the action of genetic drift overcoming strong natural selection in very small populations. If chromosome arrangements vary in their underdominance, it is those with the least disadvantage as heterozygotes, like In(2LR)PL, that will be polymorphic or fixed in natural populations. 相似文献