首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An antibody for ferredoxin was used to investigate the developmentof ferredoxin during the greening of spinach cotyledons. Ferredoxinwas present in 8-day-old etiolated cotyledons and increasedwith illumination, which means that the synthesis of ferredoxinwas both light dependent and independent. The ferredoxin purified from etiolated cotyledons, greeningcotyledons, and mature leaves was a mixture of two chemicallydistinct molecular species; ferredoxin I and II. The relativecontents of these two species varied with the stage of developmentand the conditions used. Ferredoxin I was identical with that isolated previously asvalidated by its amino acid sequence [Matsubara and Sasaki (1968)J. Biol. Chem. 243: 1732]. The complete amino acid sequenceof the second component, ferredoxin II, was determined as well.It was composed of 97 amino acid residues and differed fromferredoxin I by 25 residues. (Received October 16, 1982; Accepted December 14, 1982)  相似文献   

2.
Glutamate:glyoxylate aminotransferase had been reported to be present exclusively in the peroxisomes of plant leaves and to participate in the glycollate pathway in leaf photorespiration (Tolbert (1971) Annu. Rev. Plant Physiol. 22, 45-74]. Glutamate:glyoxylate aminotransferase activity was already present in the etiolated cotyledons of cucumber (Cucumis sativus) seedlings, and increased during greening. The enzyme was present only in the cytosol of the etiolated cotyledons and appeared in the peroxisomes during greening. The enzyme was purified to homogeneity from the cytosol of the etiolated cotyledons and from the peroxisomes of the green cotyledons of cucumber seedlings. The two enzyme preparations had nearly identical enzymic and physical properties. On the basis of these findings, roles of glutamate:glyoxylate aminotransferase in the glycollate pathway in photorespiration, and the mechanism of its appearance in the peroxisomes during greening, are discussed.  相似文献   

3.
4.
Rice leaves and seed embryos contain four isozymes of CuZn-superoxidedismutase (SOD) and two isozymes of Mn-SOD. CuZn-SOD I is amajor enzyme in leaves, but not in embryos or etiolated seedlings.CuZn-SODs II,III and IV were found in the embryos but were alsofound as minor isozymes in leaves. CuZn-SODs I, II and IV were purified to homogeneity from riceleaves. CuZn-SODs I and II had similar properties with respectto molecular weight, dimeric structure, absorption spectrumand metal content, but their amino acid compositions differedfrom each other. The absorption spectrum of CuZn-SOD IV wassimilar to that of isozymes I and II, but this enzyme was amonomer with a molecular mass of 1.7 kDa. Antibody against CuZn-SODI from rice did not cross-react with isozymes II and IV. Antibodiesagainst CuZn-SOD from spinach leaves cross-reacted with isozymeI but not with isozymes II, III and IV. By contrast, the antibodiesagaist CuZn-SOD from spinach seeds cross-reacted with isozymesII, III and IV but not with isozyme I. Thus, the isozyme thatis expressed mainly in leaves (CuZn-SOD I) and the isozymesexpressed mainly in non-photosynthetic tissues (CuZn-SODs II,III, IV) are immunologically distinct. (Received October 7, 1988; Accepted January 27, 1989)  相似文献   

5.
The acyl carrier protein (ACP), an essential protein cofactor for fatty acid synthesis, has been isolated from two cyanobacteria: the filamentous, heterocystous, Anabaena variabilis (ATCC 29211) and the unicellular Synechocystis 6803 (ATCC 27184). Both ACPs have been purified to homogeneity utilizing a three-column procedure. Synechocystis 6803 ACP was purified 1800-fold with 67% yield, while A. variabilis ACP was purified 1040-fold with 50% yield. Yields of 13.0 micrograms ACP/g Synechocystis 6803 and 9.0 micrograms ACP/g A. variabilis were achieved. Amino acid analysis indicated that these ACPs were highly charged acidic proteins similar to other known ACPs. Sequence analysis revealed that both cyanobacterial ACPs were highly conserved with both spinach and Escherichia coli ACP at the phosphopantetheine prosthetic group region. Examining the probability of alpha-helix and beta-turn regions in various ACPs, showed that cyanobacterial ACPs were more closely related to E. coli ACP than spinach ACP I. Immunoblot analysis and a competitive binding assay for ACP illustrated that both ACPs bound poorly to spinach ACP I antibody. SDS/PAGE and native PAGE of Synechocystis 6803 ACP and A. variabilis ACP showed that cyanobacteria ACPs co-migrated with E. coli ACP and had relative molecular masses of 18,100 and 17,900 respectively. Both native and urea gel analysis of acyl-ACP products from fatty acid synthase reactions demonstrated that bacterial ACPs and plant ACP gave essentially the same metabolic products when assayed using either bacterial or plant fatty acid synthase. A. variabilis and Synechocystis 6803 ACP could be acylated using E. coli acyl ACP synthetase.  相似文献   

6.
The primary structure of spinach acyl carrier protein   总被引:7,自引:0,他引:7  
Acyl carrier protein (ACP) from spinach leaves has been purified to homogeneity by high-performance liquid chromatography with an anion-exchange column. The amino acid sequence of one major ACP in spinach leaves, ACP-I, has been determined by automated Edman degradation. It consists of the following 82 amino acids: (sequence in text). Sequencing of the intact polypeptide provided data for the first 57 residues. Cleavage of the succinylated ACP with CNBr at Met-46, followed by sequencing of the fragment mixture, provided data for the final 36 residues. The C-terminal alanine was confirmed by carboxypeptidase Y digestion. The spinach ACP has 40, 70, and 25% homology with Escherichia coli, barley, and rabbit ACPs, respectively. The results not only provide the first complete sequence of a plant ACP, but also provide insight into the structural and evolutionary relationships among plant, animal, and bacterial ACPs.  相似文献   

7.
We have characterized the occurrence and expression of multiple acyl carrier protein (ACP) isoforms in Arabidopsis thaliana (L.) Heynh ecotype Columbia. Immunoblot analysis of ACPs from Arabidopsis tissues separated by native polyacrylamide gel electrophoresis and 1 molar urea polyacrylamide gel electrophoresis revealed a complex pattern of multiple ACP isoforms. All tissues examined (leaves, roots, and seeds) expressed at least three forms of ACP. The immunoblot identifications of ACP bands were confirmed by acylation of ACP extracts with Escherichia coli acyl-ACP synthetase. A full-length cDNA clone has been isolated that has 70% identity with a previously characterized Arabidopsis genomic ACP clone (ACP-1) (MA Post-Beittenmiller, A Hloušek-Radojčić, JB Ohlrogge [1989] Nucleic Acids Res 17: 1777). Based on RNA blot analysis, the cDNA clone represents an ACP that is expressed in leaves, seeds, and roots. In order to identify the protein products of each known ACP gene, their mature coding sequences have been expressed in E. coli. Using polymerase chain reactions, exons II and III of the genomic ACP-1 clone and the mature coding sequences of the ACP-2 cDNA clone were subcloned into E. coli expression vectors. Site-directed mutagenesis was used to convert the amino acid sequence of the ACP-2 cDNA clone to that of the A2 clone of Lamppa and Jacks ([1991] Plant Mol Biol 16: 469-474), ACP-3. The three E. coli-expressed proteins have different mobilities on polyacrylamide gel electrophoresis gels and each comigrates with a different Arabidopsis ACP isoform expressed in leaves, seeds, and roots. Thus, all of the three cloned ACPs appear to be constitutively expressed Arabidopsis ACPs. In addition to these three ACP isoforms, protein blots indicate that seed, leaf, and root each express one or more tissue-specific isoforms.  相似文献   

8.
Oxygen-evolving photosystem II complex was isolated from spinach chloroplasts. The individual polypeptides of the complex were isolated from sodium dodecyl sulfate (SDS)-polyacrylamide gels and antibodies were raised in rabbits against these polypeptides. After washing of the isolation complex by 0.8 M Tris to release the extrinsic proteins, a distinct diffused protein band was revealed at the position of 33 kDa in SDS gels containing 4 M urea. When this band was electroeluted from the gel and subsequently electrophoresed on SDS gels, three distinct protein bands became apparent. Antibodies raised against each one of these polypeptides cross-reacted with the other two polypeptides to varying degrees but not with the other subunits of the complex. The three polypeptides were denoted as "34," "33," and "32" kDa and the 33 being the herbicide-binding protein. Using the antibodies, the relative amounts of the photosystem II polypeptides were followed during greening of etiolated spinach seedlings. While all three extrinsic polypeptides were present in etiolated leaves at relatively high amounts, the other polypeptides could not be detected prior to an approximate 6-h illumination period. Further illumination induced the appearance of all of the rest of the subunits in a relatively similar rate. The oxygen evolution activity was developed parallel to the increase in the amounts of these polypeptides. Therefore, the assembly of the active photosystem II during greening is a two-step process in contrast with the photosystem I reaction center, which is assembled step by step, and the rest of the chloroplast protein complexes, which are assembled by a concerted mechanism.  相似文献   

9.
Seeds of coriandrum sativum (coriander) and Thunbergia alata (black-eyed Susan vine) produce unusual monoenoic fatty acids which constitute over 80% of the total fatty acids of the seed oil. The initial step in the formation of these fatty acids is the desaturation of palmitoyl-ACP (acyl carrier protein) at the delta(4) or delta(6) positions to produce delta(4)-hexadecenoic acid (16:1(delta(4)) or delta(6)-hexadecenoic acid (16:1(delta(6)), respectively. The involvement of specific forms of ACP in the production of these novel monoenoic fatty acids was studied. ACPs were partially purified from endosperm of coriander and T. alata and used to generate 3H- and 14C-labelled palmitoyl-ACP substrates. In competition assays with labelled palmitoyl-ACP prepared from spinach (Spinacia oleracea), delta(4)-acyl-ACP desaturase activity was two- to threefold higher with coriander ACP than with spinach ACP. Similarly, the T. alata delta(6) desaturase favoured T. alata ACP over spinach ACP. A cDNA clone, Cs-ACP-1, encoding ACP was isolated from a coriander endosperm cDNA library. Cs-ACP-1 mRNA was predominantly expressed in endosperm rather than leaves. The Cs-ACP-1 mature protein was expressed in E. coli and comigrated on SDS-PAGE with the most abundant ACP expressed in endosperm tissues. In in vitro delta(4)-palmitoyl-ACP desaturase assays, the Cs-ACP-1 expressed from E. coli was four- and 10-fold more active than spinach ACP or E. coli ACP, respectively, in the synthesis of delta(4)-hexadecenoic acid from palmitoyl-ACP. In contrast, delta(9)-stearoyl-ACP desaturase activity from coriander endosperm did not discriminate strongly between different ACP species. These results indicate that individual ACP isoforms are specifically involved in the biosynthesis of unusual seed fatty acids and further suggest that expression of multiple ACP isoforms may participate in determining the products of fatty acid biosynthesis.  相似文献   

10.
Phytochrome from leaves of light-grown oat (Avena sativa L. cv. Garry) plants is characterized with newly generated monoclonal antibodies (MAbs) directed to it. The results indicate that there are at least two phytochromes in green oat leaves, each of which differs from the phytochrome that is most abundant in etiolated oat tissue. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with reference to 124-kilodalton (kDa) phytochrome from etiolated oats, the two phytochromes from green oats have monomer sizes of 123 of 125 kDa. Immunoblot analysis of SDS, sample buffer extracts of lyophilized, green oat leaves indicates that neither the 125-kDa nor the 123-kDa polypeptide is a degradation product arising after tissue homogenization. Of the two, the 123-kDa phytochrome appears to be the predominant species in light-grown oat leaves. During SDS-PAGE in the presence of 1 mM Zn2+, 123-kDa phytochrome undergoes a mobility shift corresponding to an apparent mass increase of 2 kDa. In contrast, the electrophoretic mobility of 125-kDa phytochrome is unaffected by added Zn2+. Some MAbs that recognize 123-kDa phytochrome fail to recognize 125-kDa phytochrome and vice versa, indicating that these two phytochromes are not only immunochemically distinct from 124-kDa phytochrome, but also from each other. It is evident, therefore, that there are at least three phytochromes in an oat plant: 124-kDa phytochrome, which is most abundant in etiolated tissue, plus 123-and 125-kDa phytochromes, which predominate in light-grown tissue.Abbreviations Da Dalton - HA hydroxyapatite - MAb monoclonal antibody - PAb polyclonal antibody preparation - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate This research was supported by the U.S. Department of Energy (contract DE-AC-09-81SR10925 to L.H.P.). We thank Dr. Alan Jones, Department of Biology, University of North Carolina, Chapel Hill, USA, for kindly providing rabbit antiserum 4032, and Mrs. Donna Tucker and Mrs. Danielle Neal for their technical assistance.  相似文献   

11.
Abstract. Avena sativa L. (oat) seedings were grown 4 d in continuous white light followed by 3 d in darkness. Probes derived from an oat phytochrome cDNA clone (pAP 3.2) were used in slot blot analyses to measure the abundance of phytochrome mRNA in the distinct etiolated and green portions of the leaves produced by these seedlings. Both the green and etiolated portions accumulated phytochrome mRNA to a level of about 85% of the etiolated seedling level. Subsequent experiments with similar seedlings showed that both the green and etiolated portions were capable of inducing a dramatic decline in phytochrome mRNA abundance in response to a saturating red light pulse. Despite the ability of green portions of oat leaves to accumulate phytochrome mRNA and to down-regulate phytochrome mRNA abundance in response to light, no substantial variation in phytochrome mRNA abundance was observed in green oat seedlings maintained on a 12-h day/12-h night cycle. In the same oat seedlings, the abundance of chlorophyll a/b binding protein mRNA fluctuated dramatically during the day/night cycle.  相似文献   

12.
13.
14.
Changes in the activity and abundance of NADPH:protochlorophyllide oxidoreductase (NPR) and the abundance of mRNA encoding it were examined during the greening of 5-d-old etiolated cucumber cotyledons under continuous illumination. To measure NPR activity in the extracts from fully greened tissues, we have developed an improved method of assay. Upon exposure of etiolated cotyledons to light, NPR activity decreased rapidly within the first 2 h of exposure. Thereafter, enzymatic activity increased transiently, reaching a submaximum level at 12 h, and decreased slowly. The level of immunodetectable NPR protein followed the same pattern of changes during 96 h of greening as observed for NPR activity. The NPR mRNA in etiolated cotyledons disappeared quickly in the 1st h of irradiation. However, the level of mRNA increased thereafter to reach 3-fold or more of the dark level at 12 h and then decreased. The changes in the activity, protein level, and mRNA level after the first rapid decreases corresponded chronologically and nearly paralleled the increase in the rate of chlorophyll accumulation. These findings suggest that the greening of cucumber cotyledons is regulated basically by the level of NPR protein without activation or repression of enzymatic activity and that NPR mRNA increased by light maintains the level of enzyme protein necessary for greening.  相似文献   

15.
16.
17.
Y. Shimazaki  L. H. Pratt 《Planta》1986,168(4):512-515
Thirty-nine antiserum preparations from eight rabbits were screened for their ability to precipitate the immunochemically distinct phytochrome that is obtained from green oat (Avena sativa L.) shoots. The antisera were obtained from rabbits immunized with either proteolytically degraded, but still photoreversible, 60-kDa (kilodalton) phytochrome, or approx. 120-kDa phytochrome, both of which were purified from etiolated oat shoots. The ability of these antisera to precipitate phytochrome from green oats was independent of the size of phytochrome used for immunization. While crude antisera immunoprecipitated as much as 80% of the phytochrome isolated from green oat shoots, antibodies immunopurified from these sera with a column of highly purified, approx. 120-kDa phytochrome from etiolated oats precipitated no more than about 5–10%.Abbreviations kDa kilodalton - mU milliunit  相似文献   

18.
19.
Immunological Studies of Betaine Aldehyde Dehydrogenase in Barley   总被引:2,自引:0,他引:2  
The changes in the level of the protein for betaine aldehydedehydrogenase, which catalyzes the last step in the synthesisof glycinebetaine, were analyzed with antiserum raised againstSDS-denatured betaine aldehyde dehydrogenase from spinach. Inbarley leaves, the levels of betaine aldehyde dehydrogenaseprotein were found to be enhanced by the addition of 200 mMNaCl to the growth medium. These changes in the level of theenzyme protein corresponded to those in the activity of theenzyme, as described in our previous study (Arakawa et al. 1990).The extent of this enhancement was reduced when barley plantswere relieved from salt stress. An increase in the level ofthe protein was also induced by water stress, such as the withholdingof water or the addition of polyethylene glycol 6000. Betainealdehyde dehydrogenase protein was detected in etiolated leavesand roots, as well as in green leaves. In etiolated leaves,the level of betaine aldehyde dehydrogenase protein was notaffected by salt stress. 1 This work was supported by a grant from the Bio-Media Projectof the Japanese Ministry of Agriculture, Forestry and Fisheries(BMP92-III-l-1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号