首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Turgeon 《Planta》1987,171(1):73-81
Phloem unloading in transition sink leaves of tobacco (Nicotiana tabacum L.) was analyzed by quantitative autoradiography. Detectable levels of labeled photoassimilates entered sink leaves approx. 1 h after source leaves were provided with 14CO2. Samples of tissue were removed from sink leaves when label was first detected and further samples were taken at the end of an experimental phloem-unloading period. The amount of label in veins and in surrounding cells was determined by microdensitometry of autoradiographs using a microspectrophotometer. Photoassimilate unloaded from first-, second-and third-order veins but not from smaller veins. Import termination in individual veins was gradual. Import by the sink leaf was completely inhibited by exposing the sink leaf to anaerobic conditions, by placing the entire plant in the cold, or by steam-girdling the sink-leaf petiole. Phloem unloading was completely inhibited by cold; however, phloem unloading continued when the sink-leaf petiole was steam girdled or when the sink leaf was exposed to a N2 atmosphere. Compartmental efflux-analysis indicated that only a small percentage of labeled nutrients was present in the free space after unloading from sink-leaf veins in a N2 atmosphere. The results are consistent with passive symplastic transfer of photoassimilates from phloem to surrounding cells.Symbol VI radio of 14C in veins and interveinal tissue  相似文献   

2.
John Kobza  Gerald E. Edwards 《Planta》1987,171(4):549-559
The photosynthetic induction response was studied in whole leaves of wheat (Triticum aestivum L.) following 5-min, 30-min and 10-h dark periods. After the 5-min dark treatment there was a rapid burst in the rate of photosynthesis upon illumination (half of maximum after 30s), followed by a slight decrease after 1.5 more min and then a gradual rise to the maximum rate. During this initial burst in photosynthesis, there was a rapid rise in the level of 3-phosphoglycerate (PGA) and a high PGA/triose-phosphate (triose-P) ratio was obtained. In addition, after the 5-min dark treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39), ribulose-5-phosphate kinase (EC 2.7.1.19) and chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) maintained a relatively high state of activation, and maximum activation occurred within 1 min of illumination. The results indicate there is a high capacity for CO2 fixation in the cycle upon illumination but attaining maximum rates requires an increase in the ribulose-1,5-bisphosphate (RuBP) pool (adjustment in triose-P utilization for carbohydrate synthesis versus RuBP synthesis). With both the 30-min and 10-h dark pretreatments there was only a slight rise in photosynthesis upon illumination, followed by a lag, then a gradual increase to steady-state (half-maximum rate after 6 min). In contrast to the 5-min dark treatment, the level of PGA was low and actually decreased initially, whereas the level of RuBP increased and was high during induction, indicating that Rubisco is limiting. This regulation via the carboxylase was not reflected in the initial extractable activity, which reached a maximum by 1 min after illumination. The light activation of chloroplastic fructose-1,6-bisphosphatase in leaves darkened for 30 min and 10 h prior to illumination was relatively slow (reaching a maximum after 8 min). However, this was not considered to limit carbon flux through the carbon-fixation cycle during induction since RuBP was not limiting. When photosynthesis approached the maximum steady-state rate, a high PGA/triose-P ratio and a high PGA/RuBP ratio were obtained. This may allow a high rate of photosynthesis by producing a favorable mass-action ratio for the reductive phase (the conversion of PGA to triose phosphate) while stimulating starch and sucrose synthesis.Abbreviations Chl chlorophyll - FBP fructose-1,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - Pi inoganic phosphate - Rubisco RuBP carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate - triose-P triose phosphates (dihydroxyacetone phosphate+glyceraldehyde-3-phosphate)  相似文献   

3.
Steven A Hill  Tom ap Rees 《Planta》1995,196(2):335-343
The effect of exogenous glucose on the major fluxes of carbohydrate metabolism in cores of climacteric fruit of banana (Musa cavendishii Lamb ex Paxton) was determined with the intention of using the effects in the application of top-down metabolic control analysis. Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21 °C. Cores were removed from climacteric fruit and incubated in 100 or 200 mM glucose for 4 or 6 h. The rates of starch breakdown, sucrose and fructose accumulation and CO2 production were measured. The steady-state contents of hexose monophosphates, adenylates and pyruvate were determined. In addition, the detailed distribution of label was determined after supply of the following: [U-14C]-, [1-14C]-, [3,414C]and [6-14C]glucose, and [U-14C]glycerol. The data were used to estimate the major fluxes of carbohydrate metabolism. Supply of exogenous glucose led to increases in the size of the hexose-monophosphate pools. There was a small stimulation of the rate of sugar synthesis and a major increase in the rate of starch synthesis. Starch breakdown was inhibited. Respiration responded to the demand for ATP by sugar synthesis. The effect of glucose on fluxes and metabolite pools is discussed in relation to our understanding of the control and regulation of carbohydrate metabolism in ripening fruit.Abbreviations Glc6P glucose-6-phosphate - Glc1P glucose-1-phosphate - Fru6P fructose-6-phosphate - AEC adenylate energy charge We thank Geest Foods Group, Great Dunmow, Essex, UK for giving us the bananas. SAH thanks the managers of the Broodbank Fund for a fellowship.  相似文献   

4.
Steven A Hill  Tom ap Rees 《Planta》1995,197(2):313-323
The aim of this work was to determine the effects of hypoxia on the major fluxes of carbohydrate metabolism in climacteric fruit of banana (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in air at 21°C in the dark. When the climacteric began, fruit were transferred to 15 or 10% oxygen and were analysed once the climacteric peak had been reached 8–12 h later. The rates of starch breakdown, sucrose, glucose and fructose accumulation, and CO2 production were determined, as were the contents of hexose monophosphates, adenylates and pyruvate. In addition, the detailed distribution of label was determined after supplying [U-14C]-, [1-14C]-, [3,4-14C]- and [6-14C]glucose, and [U-14C]glycerol to cores of tissue under hypoxia. The data were used to estimate the major fluxes of carbohydrate metabolism. There was a reduction in the rate of respiration. The ATP/ADP ratio was unaffected but there was a significant increase in the content of AMP. In 15% oxygen only minor changes in fluxes were observed. In 10% oxygen starch breakdown was reduced and starch synthesis was not detected. The rate of sucrose synthesis decreased, as did the rate of re-entry of hexose sugars into the hexose monophosphate pool. There was a large increase in both the glycolytic flux and in the flux from triose phosphates to hexose monophosphates. It is argued that the increase in these fluxes is due to activation of pyrophosphate: fructose-6-phosphate 1-phosphotransferase, and that this enzyme has an important role in hypoxia. The results are discussed in relation to our understanding of the control of carbohydrate metabolism in hypoxia.Abbreviations Glc6P glucose-6-phosphate - Glc1P glucose-1-phosphate - Fru6P fructose-6-phosphate - PPi inorganic pyro-phosphate We thank Geest Foods Group, Great Dunmow, Essex, UK for giving us the bananas. S.A.H. thanks the managers of the Brood bank Fund for a fellowship.  相似文献   

5.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

6.
Amyloplasts have been isolated from tubers of potato plants (Solarium tuberosum. cv. Desirée). As it is difficult to isolate amyloplasts that have a high starch content, we used transformed plants in which the content of starch was reduced. This was achieved by decreasing the activity of ADP-glucose pyrophosphorylase by antisense techniques (Müller-Röber et al., 1992, EMBO. 11, 1229–1238). In the isolated plastids the activity of glutamine-oxoglutarate-aminotransferase (glutamate synthase, EC 2.6.1.53) was dependent upon the intactness of the plastids. For the supply of redox equivalents the addition of glucose-6-phosphate (Glc6P) was required. Glucose-1-phosphate (Glc1P) did not support glutamate synthesis. Plastids were treated with Triton X-100 and the solubilized proteins reconstituted into liposomes. Transport measurements with these liposomes revealed that inorganic phosphate (Pi), dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate and Glc6P are transported in a counter-exchange mode. Transport of phosphoenolpyruvate was low and Glc1P was virtually not transported in exchange for Pi. Kinetic constants were determined for the Pi/Pi and Glc6P/Pi counter exchanges. For comparison, proteins of mitochondria from potato tubers and pea leaves were reconstituted into liposomes. As expected, the Pi/Pi exchange across the mitochondrial membrane was not affected by DHAP and Glc6P. Kinetic constants of the Pi/Pi counter exchange were determined for potato tuber mitochondria.Abbreviations DHAP dihydroxyacetone phosphate - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - PEP Phosphoenolpyruvate - 3-PGA 3-phosphoglycerate - Pi inorganic phosphate - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl] glycine This work was supported by Deutsche Forschungsgemeinschaft.  相似文献   

7.
The relationship between the gas-exchange characteristics of spinach (Spinacia oleracea L.) leaves and the activation state of sucrose-phosphate synthase was examined at different intercellular partial pressures of CO2 at two different photon flux densities. There was a strong positive correlation between the activation state of sucrose-phosphate synthase and the assimilation rate. The relationship was the same at both photon flux densities, indicating that the activation state of the enzyme is determined by a product of carbon assimilation, rather than directly by light.Abbreviations A assimilation rate for CO2 - p i intercellular CO2pressure - PFD photon flux density - SPS sucrose-phosphate-synthase - Glc6P glucose-6-phosphate - Fru6P fructose-6-phosphate A.B. was the recipient of a visiting fellowship from the National Research Council of the Italy. This work was also supported by the Science and Engineering Research Council and the Agricultural and Food Research Council, UK.  相似文献   

8.
Microautoradiography was used to follow the translocation pathways of 14C-labeled photosynthate from mature source leaves, through the stem, to immature sink leaves three nodes above. Translocation occurred in specific bundles of the midveins and petioles of both the source and sink leaves and in the interjacent internodes. When each of six major veins in the lamina of an exporting leaf was independently spot-fed 14CO2, label was exported through specific bundles in the petiole associated with that vein. When the whole lamina of a mature source leaf was fed 14CO2, export occurred through all bundles of the lamina, but acropetal export in the stem was confined to bundles serving certain immature sink leaves. Cross-transfer occurred within the stem via phloem bridges. Leaves approaching maturity translocated photosynthate bidirectionally in adjacent subsidiary bundles of the petiole. That is, petiolar bundles serving the lamina apex were exporting unlabeled photosynthate while those serving the lamina base were simultaneously importing labeled photosynthate. The petioles and midveins of maturing leaves were strong sinks for photosynthate, which was diverted from the export front to differentiating structural tissues. The data support the idea of bidirectional transport in adjacent bundles of the petiole and possibly in adjacent sieve tubes within an individual bundle.Abbreviations C central leaf trace - L left leaf trace - LPI leaf plastochron index - R right leaf trace  相似文献   

9.
Five mutant lines of barley (Hordeum vulgare L.), which are only able to grow at elevated levels of CO2, contain less than 5% of the wild-type activity of ferredoxin-dependent glutamate synthase (EC 1.4.7.1). Two of these lines (RPr 82/1 and RPr 82/9) have been studied in detail. Leaves and roots of both lines contain normal activities of NADH-dependent glutamate synthase (EC 1.4.1.14) and the other enzymes of ammonia assimilation. Under conditions that minimise photorespiration, both mutants fix CO2 at normal rates; on transfer to air, the rates drop rapidly to 15% of the wild-type. Incorporation of 14CO2 into sugar phosphates and glycollate is increased under such conditions, whilst incorporation of radioactivity into serine, glycine, glycerate and sucrose is decreased; continuous exposure to air leads to an accumulation of 14C in malate. The concentrations of malate, glutamine, asparagine and ammonia are all high in air, whilst aspartate, alanine, glutamate, glycine and serine are low, by comparison with the wild-type parent line (cv. Maris Mink), under the same conditions. The metabolism of [14C]glutamate and [14C]glutamine by leaves of the mutants indicates a very much reduced ability to convert glutamine to glutamate. Genetic analysis has shown that the mutation in RPr 82/9 segregates as a single recessive nuclear gene.Abbreviations GDH glutamate dehydrogenase (EC 1.4.1.2) - GS glutamine synthetase (EC 6.3.1.2) - RuBP ribulose 1,5-bisphosphate  相似文献   

10.
11.
It has been investigated whether diurnal rhythms of sucrose-phosphate synthase (SPS) are involved in controlling the rate of photosynthetic sucrose synthesis. Extracts were prepared from spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) leaves and assayed for enzyme activity. The activity of SPS increased in parallel with a rising rate of photosynthesis, and was increased by feeding mannose and decreased by supplying inorganic phosphate. In leaf material where sucrose had accumulated during the photoperiod or when sucrose was supplied exogenously, SPS activity decreased. During a diurnal rhythm, SPS activity increased after illumination, declined gradually during the light period, decreased further after darkening and then recovered gradually during the night. These changes did not involve an alteration of the maximal activity, but were caused by changes in the kinetic properties, revealed as a change in sensitivity to inhibition by inorganic phosphate. In experiments which modelled the response of SPS to changing metabolite concentrations, it was shown that these alterations of kinetic properties would strongly modify the activity of SPS in vivo. It is proposed that SPS can exist in kinetically distinct forms in vivo, and that the distribution between these forms can be rapidly altered. As the rate of photosynthesis increases there is an activation of SPS, which may be directly or indirectly linked to changes in the availability of Pi. This activation can be modified by factors related to the accumulation of sucrose. Under normal conditions there is a balance between these factors, and the leaf contains a mixture of the different forms of SPS.Abbreviations Chl chlorophyll - Frul,6bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose-6-phosphate - Fru1,6bisPase fructose-1,6-bisphosphatase - Fru6P 2kinase fructose-6-phosphate, 2kinase - Fru2,6bisPase fructose-2,6-bisphosphatase - Glc6P glucose-6-phosphate - Pj inorganic phosphate - SPS sucrose-phosphate synthase - UDPGLc uridine 5-diphosphate glucose  相似文献   

12.
Synechococcus leopoliensis was cultivated in a light/dark regime of 12:12 h. After onset of the illumination (2 h), the specific activity of nitrite reductase, glutamine synthetase and isocitric dehydrogenase increased; that of glucose-6-phosphate dehydrogenase decreased and that of nitrate reductase and NAD- (NADP) glutamate dehydrogenase remained nearly unchanged.This stimulation of the enzymes in vivo was also observed in vitro. Also, when extracts from darkened cells were incubated with thioredoxin and dithioerythriol enzyme activities increased in the same amount as obtained in vivo. In addition, glucose-6-phosphate dehydrogenase and isocitric dehydrogenase were stimulated by Mn2+ and Mg2+ in the assay mixture. Glutamine synthetase activity was enhanced only by Mg2+ while Mn2+ was inhibitory.The results are discussed with respect to the regulation of nitrogen metabolism by light.Abbreviations GS glutamine synthetase - GOGAT glutamate-oxoglutarate-aminotransferase - TR thioredoxin - DTE dithioerythritol - LD change from light to dark  相似文献   

13.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

14.
The relationship between the gas-exchange characteristics of attached leaves of Phaseolus vulgaris L. and the pool sizes of several carbon-reduction-cycle intermediates was examined. After determining the rate of CO2 assimilation at known intercellular CO2 pressure, O2 pressure and light, the leaf was rapidly killed (<0.1 s) and the levels of ribulose-1,5-bisphosphate (RuBP), 3-phosphoglyceric acid (PGA), fructose-1,6-bisphosphate, fructose-6-phosphate, glucose-6-phosphate, glyceraldehyde-3-phosphate, and dihydroxyacetone phosphate were measured. In 210 mbar O2, photosynthesis appeared RuBP-saturated at low CO2 pressure and RuBP-limited at high CO2 pressure. In 21 mbar (2%) O2, the level of RuBP always appeared saturating. Very high levels of PGA and other phosphate-containing compounds were found with some conditions, especially under low oxygen.Abbreviations and symbols C1 intercellular CO2 pressure - PGA 3-phosphoglyceric acid - RuBP ribulose-1,5-bisphosphate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase  相似文献   

15.
The aim of this work was to discover whether the respiration of wheat (Triticum aestivum L. cv. Huntsman) leaves, transferred to darkness after 7 h photosynthesis, showed an initial period of wasteful respiration. For young and old leaves, CO2 production and O2 uptake after 7 h photosynthesis were up to 56% higher than at the end of an 8-h night. The maximum catalytic activities of citrate synthase (EC 4.1.3.7), aconitase (EC 4.2.1.3), fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) at the end of the day did not differ from those at the end of the night. Changes in the contents of glucose 6-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, and -ketoglutarate did not as a group parallel the changes in the rate of respiration. The detailed distribution of label from [U-14C] sucrose supplied to leaves in the dark was similar at the end of the day and the end of the night. No correlation was observed between the rates of leaf respiration and extension growth. It is argued that the higher rate of respiration at the beginning of the night cannot be attributed to wasteful respiration.Abbreviation RQ respiratory quotient We thank Dr H. Thomas and Professor C.J. Pollock, Institute for Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, UK for their generous help in measuring leaf extension. R.H.A. thanks the Science and Engineering Research Council for a studentship.  相似文献   

16.
Occurrence of diamine oxidase in the apoplast of pea epicotyls   总被引:4,自引:0,他引:4  
R. Federico  R. Angelini 《Planta》1986,167(2):300-302
Most of the diamine oxidase (EC 1.4.3.6) present in pea (Pisum sativum L. cv. Rondo) epicotyls is found in the fluid obtained by centrifuging pea epicotyl sections previously infiltrated under vacuum with a buffer solution. No detectable amount of the cytoplasmic enzyme glucose-6-phosphate dehydrogenase is present in this fluid, showing that there is very little contamination by cell contents. Polyacrylamide-gel electrophoresis and specific-activity data indicate that diamine oxidase is the most plentiful protein in the extracellular solution obtained from pea epicotyl sections and that an active process is involved in the selective transfer of the enzyme outside the cell. The possible involvement of diamine oxidase in the supply of H2O2 to peroxidase-catalyzed reactions occurring inside the cell wall is discussed.Abbreviations DAO diamine oxidase - Glc6P glucose-6-phosphate  相似文献   

17.
(i) We have studied the influence of reduced phosphoglucose-isomerase (PGI) activity on photosynthetic carbon metabolism in mutants of Clarkia xantiana Gray (Onagraceae). The mutants had reduced plastid (75% or 50% of wildtype) or reduced cytosolic (64%, 36% or 18% of wildtype) PGI activity. (ii) Reduced plastid PGI had no significant effect on metabolism in low light. In high light, starch synthesis decreased by 50%. There was no corresponding increase of sucrose synthesis. Instead glycerate-3-phosphate, ribulose-1,5-bisphosphate, reduction of QA (the acceptor for photosystem II) and energy-dependent chlorophyll-fluorescence quenching increased, and O2 evolution was inhibited by 25%. (iii) Decreased cytosolic PGI led to lower rates of sucrose synthesis, increased fructose-2,6-bisphosphate, glycerate-3-phosphate and ribulose-1,5-bisphosphate, and a stimulation of starch synthesis, but without a significant inhibition of O2 evolution. Partitioning was most affected in low light, while the metabolite levels changed more at saturating irradiances. (iv) These results provide decisive evidence that fructose-2,6-bisphosphate can mediate a feedback inhibition of sucrose synthesis in response to accumulating hexose phosphates. They also provide evidence that the ensuing stimulation of starch synthesis is due to activation of ADP-glucose pyrophosphorylase by a rising glycerate-3-phosphate: inorganic phosphate ratio, and that this can occur without any loss of photosynthetic rate. However the effectiveness of these mechanisms varies, depending on the conditions. (v) These results are analysed using the approach of Kacser and Burns (1973, Trends Biochem. Sci. 7, 1149–1161) to provide estimates for the elasticities and flux-control coefficient of the cytosolic fructose-1,6-bisphosphatase, and to estimate the gain in the fructose-2,6-bisphosphate regulator cycle during feedback inhibition of sucrose synthesis.Abbreviations and symbols Chl chlorophyll - Fru6P fructose-6-phosphate - Frul,6bisP fructose-1,6-bisphosphate - Fru-1,6Pase fructose-1,6-bisphosphatase - Fru2,6bisP fructose-2,6-bisphosphate - Fru2,6Pase fructose-2,6-bisphosphatase - Glc6P glucose-6-phosphate - PGI phosphoglucose isomerase - Pi inorganic phosphate - QA acceptor for photosystem II - Ru1,5bisP ributose-1,5-bisphosphate - SPS sucrose-phosphate synthase  相似文献   

18.
The aim of this work was to examine the effect of temperature in the range 5 to 30 ° C upon the regulation of photosynthetic carbon assimilation in leaves of the C4 plant maize (Zea mays L.) and the C3 plant barley (Hordeum vulgare L.). Measurements of the CO2-assimilation rate in relation to the temperature were made at high (735 bar) and low (143 bar) intercellular CO2 pressure in barley and in air in maize. The results show that, as the temperature was decreased, (i) in barley, pools of phosphorylated metabolites, particularly hexose-phosphate, ribulose 1,5-bisphosphate and fructose 1,6-bisphosphate, increased in high and low CO2; (ii) in maize, pools of glycerate 3-phosphate, triose-phosphate, pyruvate and phosphoenolpyruvate decreased, reflecting their role in, and dependence on, intercellular transport processes, while pools of hexose-phosphate, ribulose 1,5-bis phosphate and fructose 1,6-bisphosphate remained approximately constant; (iii) the redox state of the primary electron acceptor of photosystem II (QA) increased slightly in barley, but rose abruptly below 12° C in maize. Non-photochemical quenching of chlorophyll fluorescence increased slightly in barley and increased to high values below 20 ° C in maize. The data from barley are consistent with the development of a limitation by phosphate status at low temperatures in high CO2, and indicate an increasing regulatory importance for regeneration of ribulose 1,5-bisphosphate within the Calvin cycle at low temperatures in low CO2. The data from maize do not show that any steps of the C4 cycle are particularly cold-sensitive, but do indicate that a restriction in electron transport occurs at low temperature. In both plants the data indicate that regulation of product synthesis results in the maintenance of pools of Calvin-cycle intermediates at low temperatures.Abbreviations Glc6P glucose-6-phosphate - Fru6P fructase-6-phosphate - Frul,6bisP fructose-1,6-bisphosphate - PGA glycerate-3-phosphate - p i intercellular partial pressure of CO2 - RuBP ribulose-1,5-bisphosphate - triose-P sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate We thank the Agricultural and Food Research Council, UK (Research grant PG50/67) and the Science and Engineering Research Council, UK for financial support. C.A.L. was supported by the British Council, by the Conselho Nacional de Desenvolvimento Cientiflco e Tecnologico (CNPq), Brazil and by an Overseas Research Student Award. We also thank Mark Stitt (Bayreuth, FRG) and Debbie Rees for helpful discussions.  相似文献   

19.
(i) Sucrose-phosphate synthase (SPS) was purified 40-fold from stored potato (Solanum tuberosum L.) tubers to a final specific activity of 33–70 nkat·(mg protein)–1 via batch elution from diethylaminoethyl (DEAE)-sephacel, polyethylene glycol (PEG) precipitation and Mono Q anion-exchange chromatography. (ii) Immunoblotting revealed a major and a minor band with molecular weights of 124.8 kDa and 133.5 kDa, respectively. Both bands were also present in extracts prepared in boiling SDS to exclude proteolysis. No smaller polypeptides were seen, except when the preparations were incubated before application on a polyacrylamide gel. (iii) The enzyme preparation was activated by glucose-6-phosphate and inhibited by inorganic phosphate. Both effectors had a large effect on the K m (fructose-6-phosphate) and the K m (uridine-5-diphosphoglucose) with phosphate acting antagonistically to glucose-6-phosphate. (iv) Preincubation of potato slices with low concentrations of okadaic acid or microcystin resulted in a three- to fourfold decrease in the activity of SPS when the tissue was subsequently extracted and assayed. The decrease was especially marked when the assay contained low concentrations of substrates and glucose-6-phosphate, and inorganic phosphate was included. Preincubation with mannose or in high osmoticum resulted in an increase of SPS activity. (v) Analogous changes were observed in germinating Ricinus communis L. seedlings. After preincubation of the cotyledons in glucose, high SPS activity could be measured, whereas okadaic acid, omission of glucose, or addition of phosphate or sucrose led to a large decrease of SPS activity in the selective assay. (vi) It is argued that SPS from non-photosynthetic tissues is regulated by metabolites and by protein phosphorylation in an analogous manner to the leaf enzyme.Abbreviations Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - Pi inorganic phosphate - PGI phosphoglucose isomerase - PP2A phosphoprotein phosphatase 2A - PEG polyethyleneglycol - SPS sucrose-phosphate synthase - UDPGlc uridine-5-diphosphoglucose This work was supported by the Deutsche Forschungsgemeinschaft, the BMFT and Sandoz AG, Basel, Switzerland. We are grateful to Prof. E. Beck (Pflanzenphysiologie, Bayreuth, Germany) for providing us with laboratory facilities, and to Dr. U. Sonnewald (Institut für Genbiologische Forschung, Berlin, Germany) for many discussions and providing us with unpublished data.  相似文献   

20.
Two different isoforms of glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) have been partially purified from barley (Hordeum vulgare L., cv. Alfeo) roots. The procedure included an ammonium sulfate step, Q-Sepharose and Reactive Blue agarose chromatography, and led to 60-fold and 150-fold purification for the two enzymes, respectively. The Glc6PDH 1 isoform accounts for 17% of total activity of the enzyme in roots, and is very sensitive to the effects of NADP+/NADPH ratio and dithiothreitol; the Glc6PDH 2 isoform is less affected by reducing power and represents 83% of the total activity. The isoforms showed distinct pH optima, isoelectric points, K m for glucose-6-phosphate and a different electrophoretic mobility. The kinetic properties for the two enzymes were affected by ATP and metabolites. Both enzymes are inhibited to different extents by ATP when magnesium is omitted from the assay mixture, whereas the addition of ATP-Mg2+ had no effect on Glc6PDH activities. The Glc6PDH isoforms are usually present in the plastids and cytosol of plant cells. To verify the intracellular locations of the enzymes purified from barley roots, Glc6PDH was purified from isolated barley root plastids; this isoform showed kinetic parameters coincident with those found for Glc6PDH 1, suggesting a plastid location; the enzyme purified from the soluble fraction had kinetic parameters resembling those of Glc6PDH 2, confirming that this isoform is present in the cytosol of barley roots. Received: 21 June 2000 / Accepted: 28 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号