首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although glutamate is a key compound in nitrogen metabolism, little is known about the function or regulation of its two biosynthetic enzymes, glutamate dehydrogenase and glutamate synthase. To begin the characterization of glutamate formation in Salmonella typhimurium, we isolated mutants having altered glutamate dehydrogenase and glutamate synthase activities. Mutants which failed to grow on media with glucose as the carbon source and less than 1 mM (NH4)2SO4 as the nitrogen source (Asm) had about one-fourth the normal glutamate synthase activity and one-half the glutamine synthetase activity. The asm mutations also prevented growth with alanine, arginine, or proline as nitrogen sources and conferred resistance to methionine sulfoximine. When a mutation (gdh-51) causing the loss of glutamate dehydrogenase activity was transferred into a strain with an asm-102 mutation, the resulting asm-102 gdh-51 mutant had a partial requirement for glutamate. A strain isolated as a complete glutamate auxotroph had a third mutation, in addition to the asm-102 gdh-51 lesions, that further decreased the glutamate synthase activities to 1/20 the normal level. Both the asm-102 and gdh-51 mutations were located on the S. typhimurium linkage map at sites distinct from those found for mutations causing similar phenotypes in Klebsiella aerogenes and Escherichia coli.  相似文献   

2.
Degradation of α-Ketoglutarate by Veillonella alcalescens   总被引:2,自引:2,他引:0       下载免费PDF全文
Veillonella alcalescens degrades alpha-ketoglutarate to CO(2), H(2), and propionate by a thioclastic mechanism.  相似文献   

3.
Two Salmonella typhimurium strains, which could be used as sources for the leucine biosynthetic intermediates α- and β-isopropylmalate were constructed by a series of P22-mediated transductions. One strain, JK527 [flr-19 leuA2010 Δ(leuD-ara)798 fol-162], accumulated and excreted α-isopropylmalate, whereas the second strain, JK553 (flr-19 leuA2010 leuB698), accumulated and excreted α- and β-isopropylmalate. The yield of α-isopropylmalate isolated from the culture medium of JK527 was more than five times the amount obtained from a comparable volume of medium in which Neurospora crassa strain FLR92-1-216 (normally used as the source for α- and β-isopropylmalate) was grown. Not only was the yield greater, but S. typhimurium strains are much easier to handle and grow to saturation much faster than N. crassa strains. The combination of the two regulatory mutations flr-19, which results in constitutive expression of the leucine operon, and leuA2010, which renders the first leucine-specific biosynthetic enzyme insensitive to feedback inhibition by leucine, generated limitations in the production of valine and pantothenic acid. The efficient, irreversible, and unregulated conversion of α-ketoisovaleric acid into α-isopropylmalate (α-isopropylmalate synthetase Km for α-ketoisovaleric acid, 6 × 10−5 M) severely restricted the amount of α-ketoisovaleric acid available for conversion into valine and pantothenic acid (ketopantoate hydroxymethyltransferase Km for α-ketoisovaleric acid, 1.1 × 10−3 M; transaminase B Km for α-ketoisovaleric acid, 2 × 10−3 M).  相似文献   

4.
Histidinol Dehydrogenase (hisD) Mutants of Salmonella typhimurium   总被引:1,自引:0,他引:1       下载免费PDF全文
A multidisciplinary analysis has been applied to over 150 hisD mutants of Salmonella typhimurium in a study of gene-enzyme relationship. The mutants were examined for production of immunologically cross-reacting material by using antibody to purified histidinol dehydrogenase, and for genetic complementation by using a set of F' factors bearing Escherichia coli hisD complementing mutants. Classifications as to missense, nonsense, frameshift, or deletion mutant are proposed on the basis of mutagenesis and suppression tests. For the suppression tests the mutants were examined both by a simultaneous suppression technique and by testing for response to E. coli F' factors bearing a recessive lethal amber and a recessive lethal ochre suppressor. The data are interpreted in relation to the position of the mutations in the recombination and complementation maps and in relation to the known composition of histidinol dehydrogenase. The gene hisD appears to be single cistron for the production of a single biosynthetic polypeptide.  相似文献   

5.
Mutants of Salmonella typhimurium containing 1 to 2% of wild-type ribonuclease I activity were isolated. The rns mutation had no effect on the polarity of mutations in the S. typhimurium histidine operon. Even in the presence of an rns mutation, it was not possible to obtain strong suppressors of the polarity of two polar mutations in the his operon.  相似文献   

6.
A simple, rapid, convenient, easily interpreted azo dye colony-staining technique was developed to detect fungal mutants lacking β-glucosidase activity on a 6-bromo-2-naphthyl substrate. The procedure includes net replication of colonies and chemical restriction of colony growth to allow testing of many colonies per culture dish.  相似文献   

7.
8.
Zeamatin is a 22-kDa protein isolated from Zea mays that has antifungal activity against human and plant pathogens. Unlike other pathogenesis-related group 5 proteins, zeamatin inhibits insect α-amylase and mammalian trypsin activities. It is of clinical significance that zeamatin did not inhibit human α-amylase activity and inhibited mammalian trypsin activity only at high molar concentrations.  相似文献   

9.
The Saccharomyces cerevisiae open reading frame YLL057c is predicted to encode a gene product with 31.5% amino acid sequence identity to Escherichia coli taurine/alpha-ketoglutarate dioxygenase and 27% identity to Ralstonia eutropha TfdA, a herbicide-degrading enzyme. Purified recombinant yeast protein is shown to be an Fe(II)-dependent sulfonate/alpha-ketoglutarate dioxygenase. Although taurine is a poor substrate, a variety of other sulfonates are utilized, with the best natural substrates being isethionate and taurocholate. Disruption of the gene encoding this enzyme negatively affects the use of isethionate and taurine as sulfur sources by S. cerevisiae, providing strong evidence that YLL057c plays a role in sulfonate catabolism.  相似文献   

10.
Experiments with growing cells and with cell-free extracts of Bacteroides ruminicola indicate that this anaerobic bacterium can synthesize alpha-ketoglutarate by a reductive carboxylation of succinate. When the organism was grown in medium containing succinate-1,4-(14)C, most of the radioactivity in cells was in the protein fraction and most of the (14)C in protein was in the glutamic acid family of amino acids (glutamate, proline, and arginine). When unlabeled succinate was added to culture medium containing glucose-U-(14)C, incorporation of radioactivity into the glutamic acid family of amino acids was greatly reduced. This supports the concept that succinate is an intermediate in synthesis of alpha-ketoglutarate. Cell-free extracts of the organism incubated with succinate-1,4-(14)C incorporated (14)C into amino acids and most of this was found in glutamate. The cofactors which stimulate glutamate synthesis from succinate by extracts from these cells appear to be similar to the factors that have been demonstrated with extracts from photosynthetic bacteria. The position of label in glutamate synthesized from succinate-1,4-(14)C, the probable absence of isocitric dehydrogenase, and studies with labeled citrate and with inhibitors of citric acid cycle enzymes support the concept of a reductive carboxylation of succinate as the only, or at least a major, mechanism for synthesis of alpha-ketoglutarate in this organism. This appears to be the first evidence for a net synthesis of alpha-ketoglutarate by this reaction in a nonphotosynthetic heterotrophic organism.  相似文献   

11.
Mutants of Klebsiella aerogenes Lacking Glutamate Dehydrogenase   总被引:1,自引:9,他引:1       下载免费PDF全文
A mutant of Klebsiella aerogenes lacking glutamate synthase activity (asm-200) is blocked in only one pathway of glutamate synthesis and can still use glutamate dehydrogenase to produce glutamate when ammonia in sufficient concentration, i.e., higher than 1 mM, is provided in the medium. However, a mutant that has neither glutamate synthase nor glutamate dehydrogenase activities (asm-200, gdhD1) requires glutamate. Transductants obtained by phage grown on wild-type cells of this double mutant, selected on medium containing less than 1 mM ammonia, regain glutamate synthase but not glutamate dehydrogenase. Surprisingly, these gdhD1 transductants grow as well in a variety of media as does a strain with glutamate dehydrogenase activity. Furthermore, transductions with these and other mutants indicate that the genes encoding glutamate synthase, glutamate dehydrogenase, glutamine synthetase, and citrate synthase are not closely linked.  相似文献   

12.
α-Ionone, α-methylionone, and α-isomethylionone were converted by Aspergillus niger JTS 191. The individual bioconversion products from α-ionone were isolated and identified by spectrometry and organic synthesis. The major products were cis-3-hydroxy-α-ionone, trans-3-hydroxy-α-ionone, and 3-oxo-α-ionone. 2,3-Dehydro-α-ionone, 3,4-dehydro-β-ionone, and 1-(6,6-dimethyl-2-methylene-3-cyclohexenyl)-buten-3-one were also identified. Analogous bioconversion products from α-methylionone and α-isomethylionone were also identified. From results of gas-liquid chromatographic analysis during the fermentation, we propose a metabolic pathway for α-ionones and elucidation of stereochemical features of the bioconversion.  相似文献   

13.
Lactococcus lactis subsp. lactis biovar diacetylactis strains are utilized in several industrial processes for producing the flavoring compound diacetyl or its precursor α-acetolactate. Using random mutagenesis with nitrosoguanidine, we selected mutants that were deficient in α-acetolactate decarboxylase and had low lactate dehydrogenase activity. The mutants produced large amounts of α-acetolactate in anaerobic milk cultures but not in aerobic cultures, except when the medium was supplemented with catalase, yeast extract, or hemoglobin.  相似文献   

14.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

15.
Hemin-Deficient Mutants of Salmonella typhimurium   总被引:4,自引:9,他引:4       下载免费PDF全文
Nine hemin-deficient mutants of Salmonella typhimurium LT2 were isolated as neomycin-resistant colonies. Five of these mutants could be stimulated by Delta-aminolevulinic acid (Delta-ALA), thus representing hemA mutants. Since S. typhimurium LT2 is not able to incorporate hemin, the identification of the mutants not stimulated by Delta-ALA was made on the basis of the simultaneous loss of catalase activity and cytochromes. The hemA gene was mapped by conjugation in the trp region, probably in the order purB-pyrD-hemA-trp; the episome FT(71)trp does not carry the hemA gene. Transductional intercrosses by phage P22 indicate that hemA 11, 12, 13, and 37 are at very closely linked sites, whereas hemA14 is at a more distant site in the same or an adjacent gene. No joint transduction was detected between hemA and trp or pyrF. The loci affected in the other hemin-deficient mutants were linked in conjugation to the pro(+) marker (frequency of linkage, 88 to 97%), but cotransduction of the two markers could not be obtained. The episome F lac hem purE, which originates from Escherichia coli K-12, could complement these hemin-deficient mutants of S. typhimurium LT2. As a result, the sequence of the markers on the chromosome of S. typhimurium LT2 is probably pro heme purE, analogous to the sequence found in E. coli K-12. Thus, the chromosome of S. typhimurium also possesses two hem regions, with a location similar to that described in E. coli K-12.  相似文献   

16.
The dynamic instability of microtubules has long been understood to depend on the hydrolysis of GTP bound to beta-tubulin, an event stimulated by polymerization and necessary for depolymerization. Crystallographic studies of tubulin show that GTP is bound by beta-tubulin at the longitudinal dimer-dimer interface and contacts particular alpha-tubulin residues in the next dimer along the protofilament. This structural arrangement suggests that these contacts could account for assembly-stimulated GTP hydrolysis. As a test of this hypothesis, we examined, in yeast cells, the effect of mutating the alpha-tubulin residues predicted, on structural grounds, to be involved in GTPase activation. Mutation of these residues to alanine (i.e., D252A and E255A) created poisonous alpha-tubulins that caused lethality even as minor components of the alpha-tubulin pool. When the mutant alpha-tubulins were expressed from the galactose-inducible promoter of GAL1, cells rapidly acquired aberrant microtubule structures. Cytoplasmic microtubules were largely bundled, spindle assembly was inhibited, preexisting spindles failed to completely elongate, and occasional, stable microtubules were observed unattached to spindle pole bodies. Time-lapse microscopy showed that microtubule dynamics had ceased. Microtubules containing the mutant proteins did not depolymerize, even in the presence of nocodazole. These data support the view that alpha-tubulin is a GTPase-activating protein that acts, during microtubule polymerization, to stimulate GTP hydrolysis in beta-tubulin and thereby account for the dynamic instability of microtubules.  相似文献   

17.
Germinating spores of Bacillus subtilis mutants which lack small, acid-soluble spore proteins α and β did not exhibit the transient elevated UV resistance seen during germination of wild-type spores.  相似文献   

18.
A regulated order of adhesion events directs leukocytes from the vascular compartment into injured tissues in response to inflammatory stimuli. We show that on human T cells, the interaction of the β2 integrin leucocyte function–associated antigen-1 (LFA-1) with its ligand intercellular adhesion molecule-1 (ICAM-1) will decrease adhesion mediated by α4β1 and, to a lesser extent, α5β1. Similar inhibition is also seen when T cells are exposed to mAb 24, which stabilizes LFA-1 in an active state after triggering integrin function through divalent cation Mg2+, PdBu, or T cell receptor/ CD3 complex (TCR/CD3) cross-linking. Such cross talk decreases α4β1 integrin–mediated binding of T cells to fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In contrast, ligand occupancy or prolonged activation of β1 integrin has no effect on LFA-1 adhesion to ICAM-1. We also show that T cell migration across fibronectin, unlike adhesion, is mediated solely by α5β1, and is increased when the α4β1-mediated component of fibronectin adhesion is decreased either by cross talk or the use of α4-blocking mAb. The ability of mAb 24 Fab′ fragments to induce cross talk without cross-linking LFA-1 suggests signal transduction through the active integrin. These data provide the first direct evidence for cross talk between LFA-1 and β1 integrins on T cells. Together, these findings imply that activation of LFA-1 on the extravasating T cell will decrease the binding to VCAM-1 while enhancing the subsequent migration on fibronectin. This sequence of events provides a further level of complexity to the coordination of T cell integrins, whose sequential but overlapping roles are essential for transmigration.  相似文献   

19.
Several preparations of staphylococcal alpha-toxin and delta-lysin were studied in order to compare hemolytic activity with capacity to lyse bacterial protoplasts. delta-Lysin in relatively low concentration lysed protoplasts of Sarcina lutea, protoplasts of Streptococcus faecalis, and spheroplasts of Escherichia coli. Lysis of bacterial protoplasts by preparations of alpha-toxin appeared to be due to contamination of the preparations with delta-lysin. Data comparing the protoplast-lysing activity of various lytic agents are presented.  相似文献   

20.
Intestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression. Kdm6b is an epigenetic enzyme responsible for the demethylation of H3K27Me3 and thus promotes gene expression. Here we identified Kdm6b as an important intracellular regulator of small intestinal IELs. Mice genetically deficient for Kdm6b showed greatly reduced numbers of TCRαβ+CD8αα+ IELs. In the absence of Kdm6b, TCRαβ+CD8αα+ IELs exhibited increased apoptosis, disturbed maturation and a compromised capability to lyse target cells. Both IL-15 and Kdm6b-mediated demethylation of histone 3 at lysine 27 are responsible for the maturation of TCRαβ+CD8αα+ IELs through upregulating the expression of Gzmb and Fasl. In addition, Kdm6b also regulates the expression of the gut-homing molecule CCR9 by controlling H3K27Me3 level at its promoter. However, Kdm6b is dispensable for the reactivity of thymic precursors of TCRαβ+CD8αα+ IELs (IELPs) to IL-15 and TGF-β. In conclusion, we showed that Kdm6b plays critical roles in the maturation and cytotoxic function of small intestinal TCRαβ+CD8αα+ IELs.Subject terms: Epigenetics, Gene regulation, Immunological disorders, T cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号