首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We constructed a system in which wild-type RepA or RepAcop1 protein was supplied in trans in various amounts to coexisting mini-Rts1 plasmids by clones of the repA or repAcop1 gene under the control of the native promoter with or without its operator sequence. RepAcop1 protein which contains a single amino acid substitution (Arg-142 to Lys) within its 288 amino acids could initiate the replication of the mini-Rts1 plasmid efficiently at both 37 and 42 degrees C even if it was supplied in excess. In contrast, excess wild-type RepA inhibited plasmid replication at 37 degrees C but supported replication at 42 degrees C. Therefore, it appears that the initiator activity of RepA is not related to the incompatibility phenotype associated with an excess of RepA protein. An immunoblot analysis revealed that neither RepA nor RepAcop1 synthesis was temperature sensitive and that both were autogenously regulated to a similar extent because of the presence of an operator located immediately upstream of the promoter. Two mutant RepA proteins, each of which contains a 4-amino-acid insertion in the middle of the protein, maintained the autorepressor and incompatibility activities but lost the ori(Rts1)-activating function.  相似文献   

3.
An Hfr strain of Escherichia coli K-12 was obtained by integrative suppression with a thermosensitive plasmid, Rts1. The R plasmid was integrated into the chromosome between rif and thr, and transfer of the chromosome occurred counterclockwise. The thermosensitivity of host cell growth due to the dnaA mutation was markedly but not completely reduced in this integratively suppressed Hfr strain. When the dnaA mutation was removed by transducing the dnaA+ genome to this Hfr, the thermosensitivity of cell growth due to existence of Rts1 was suppressed in contrast to strains carrying it autonomously. Thermosensitivity of cell growth appeared again when the plasmid was detached from the chromosome to exist autonomously. Contrary to the effect on cell growth, the transfer of the chromosome and the plasmid itself and the ability to "restrict" T-even phages were still thermosensitive in all of these strains carrying Rts1, irrespective of its state of existence. The detached plasmid as well as the original Rts1 were segregated upon growth at 42 C. These data are discussed in relation to chromosome-plasmid interaction. One of the most important conculusions is that some plasmid genes, related to their replication, are phenotypically suppressed by the chromosome when it is integrated.  相似文献   

4.
Molecular cloning and mapping of a deletion derivative of the plasmid Rts 1   总被引:6,自引:0,他引:6  
The plasmid pTW20 is a deletion derivative of the kanamycin resistance plasmid Rts1. By digesting pTW20 DNA with EcoRI endonuclease six fragments were generated, and each was cloned in the vector plasmid pACYC184. These cloned EcoRI fragments were further digested with various endonucleases, and the cleavage map of pTW20 was constructed. A SalI fragment (1.5 Md) in E1 (the largest EcoRI fragment; 11.5 Md) contained the genes kan (kanamycin resistance) and puv (uv sensitization of host). An electron microscopy study of a BamHI fragment containing kan revealed the presence of a transposon-like structure in the fragment. The smallest EcoRI fragment E6 (2.0 Md) was capable of autonomous replication in a polA host, indicating that E6 contained replication genes of pTW20. These genes were found to be located on a 1.1-Md HindIII fragment in E6. Two incompatibility genes were identified on the pTW20 genome, one located on each of the fragments E6 and E5 (3.5 Md), and expressed T incompatibility independently. The nature of the temperature sensitivity of pTW20 was discussed.  相似文献   

5.
A replication region, consisting of a 1.1-megadalton (Md) EcoRI/HindIII fragment, was isolated from an Rts1 derivative plasmid. This 1.1-Md fragment, designated as mini-Rts1, was ligated to either pBR322 or a nonreplicating DNA fragment specifying a drug resistance, and its replication properties were investigated. The mini-Rts1 plasmid was cured at a high frequency at 42 °C, while it was maintained stably at 37 °C despite it existed in low copy number. These behaviors are quite similar to those of Rts1. By dissecting the pBR322:mini-Rts1 chimeric plasmid with AccI endonuclease, an inc region of 0.34 Md in size was cloned, which expressed incompatibility toward Rts1. Proteins encoded on the mini-Rts1 genome were examined in the minicell system, and one specific product of 35,000 daltons in molecular weight was identified. Any polypeptides specific for the 0.34-Md inc+ region within mini-Rts1 were not detected.  相似文献   

6.
Control of replication and segregation of R plasmid Rts1.   总被引:7,自引:6,他引:1       下载免费PDF全文
A mutant plasmid, pTW2, which was derived from the integrated Rst1 genome in the Escherichia coli chromosome, was studied as to its mode of replication at 30 degrees C. When Proteus mirabilis Pm17 harboring pTW2 was grown in broth at 30 degrees C, a considerable number of R- segregants (approximately 40%) were consistently observed. This indicates that pTW2 is unstable even at the permissive temperature for the replication of Rts1. The pTW2+ cells in a culture were heterogeneous with respect to the level of kanamycin resistance, ranging from 500 to 4,000 mug of the drug per ml. The amount of pTW2 deoxyribonucleic acid (DNA) relative to the Pm17 chromosomal DNA was about fivefold as large as that of Rts1 DNA in an exponentially growing culture. In addition, pTW2 in P. mirabilis continued to replicate after the chromosome had ceased to replicate, which was shown in the study of the inhibition of protein synthesis. Contrary to pTW2, the parent plasmid Rts1 is highly stable, and the relative percent Rts1 DNA is maintained at approximately 7% in any cultural conditions at a permissive temperature. These results suggest that copies of pTW2 may not segregate evenly into the host progeny upon cell division and that the replication of pTW2 does not coordinate with that of the chromosome. A remarkable instability of pTW2 as well as an increase in the relative percent pTW2 DNA was also shown when E. coli were used as the host cells. These results suggest the possibility that there is a gene or a gene cluster on the Rst1 genome responsible for the control of both replication and segregation of Rts1.  相似文献   

7.
Rts1 is a high-molecular-weight (126 x 10(6)) plasmid encoding resistance to kanamycin. It expresses unusual temperature-sensitive phenotypes, which affect plasmid maintenance and replication, as well as host cell growth. We have cloned the essential replication region of Rts1 from pAK8, a smaller derivative which is phenotypically similar to Rts1. Restriction endonuclease digests of isolated pAK8 deoxyribonucleic acid were allowed to "self-ligate" (ligation without an additional cloning vector) and subsequently were used to transform Escherichia coli strain 20SO to kanamycin resistance. Screening of these strains for the phenotypes of thermosensitive host growth and temperature-dependent plasmid elimination demonstrated that these two properties were expressed independently. Furthermore, it was shown that the Rts1 replication locus per se is not necessarily responsible for altered host growth at the nonpermissive temperature. The kanamycin resistance fragment of pAK8 was also cloned into pBR322. Electrophoretic analysis of BamHI restriction enzyme digests of this plasmid and similar digests of an Rts1 miniplasmid has allowed the identification of an 18.6-megadalton fragment carrying the replication locus and a 14.1-megadalton fragment carrying the kanamycin resistance gene.  相似文献   

8.
Protein-protein interactions have been widely used to study gene expression pathways and may be considered as a new approach to drug discovery. Here I report the development of a universal protein array (UPA) system that provides a sensitive, quantitative, multi-purpose, effective and easy technology to determine not only specific protein-protein interactions, but also specific interactions of proteins with DNA, RNA, ligands and other small chemicals. (i) Since purified proteins are used, the results can be easily interpreted. (ii) UPA can be used multiple times for different targets, making it economically affordable for most laboratories, hospitals and biotechnology companies. (iii) Unlike DNA chips or DNA microarrays, no additional instrumentation is required. (iv) Since the UPA uses active proteins (without denaturation and renaturation), it is more sensitive compared with most existing methods. (v) Because the UPA can analyze hundreds (even thousands on a protein microarray) of proteins in a single experiment, it is a very effective method to screen proteins as drug targets in cancer and other human diseases.  相似文献   

9.
The ability of 13 Erwinia strains to accept, to inherit and to transmit the Rts1 factor by conjugation was studied. 11 strains accepted the Rts1 factor from Escherichia coli K-12 CSH-2 with the frequency of about 10(-7)--10(-3). The Rts1 factor was genetically stable in the Erwinia cells and was not eliminated by acriflavine and under the temperature of 37 and 42 degrees C. All the R+ exconjugants were characterized with more high degree of the resistance of kanamycin than E. coli cells harbouring the same R factor. Erwinia strains harbouring the Rts1 plasmid transferred it by conjugation into homologic (Erwinia) and heterologic (E. coli) bacteria. The study of kinetics of the transfer of the Rts1 factor in different mating systems showed that the transfer of this plasmid from R+ Erwinia into R- Erwinia and R- E. coli--in the liquid medium. It is concluded that Erwinia can be the host and the donor of the Rts1 factor.  相似文献   

10.
Y Terawaki  Z Hong  Y Itoh    Y Kamio 《Journal of bacteriology》1988,170(3):1261-1267
RepA protein, essential for replication of plasmid Rts1, was found to bind in vivo immediately upstream of the repA promoter in studies with mini-Rts1 derivatives with deletions in the upstream region of repA. We constructed another series of repA mutants that would encode RepA derivatives containing oligopeptide substitutions in place of the carboxyl-terminal six amino acids. These modified RepA proteins could not activate ori (Rts1) at all and showed various degrees of incompatibility, or no incompatibility, toward a mini-Rts1 plasmid. These results suggest that the carboxyl-terminal six (or fewer) amino acids of RepA are important for exerting replication and incompatibility functions. One of the RepA derivatives, which showed an evident incompatibility without initiating replication, was examined for its ability to repress the repA gene.  相似文献   

11.
12.
Replication of the thermosensitive drug resistance factor Rts1 was studied at the nonpermissive temperature (42 degrees C). It was concluded from the following observations that replication of this plasmid takes place at 42 degrees C without involving the covalently closed circular (CCC) form of deoxyribonucleic acid (DNA). (i) DNA-DNA- reassociation kinetics studies with purified Rts1 DNA showed that Rts1 DNA increased several-fold during cell growth at 42 degrees C while very little, if any, CCC DNA was synthesized. (ii) When Escherichia coli 20S0(Rts1) was labeled with [3H]thymidine at 42 degrees C, a significant amount of radioactive DNA hybridizable to Rts1 DNA was formed. This DNA was found in a fraction where DNA other than CCC DNA was expected in alkaline sucrose density gradient centrifugation analysis. When E. coli 20S0(Rts1) was labeled at 32 degrees C, the labeled CCC DNA did not disappear during a chase period at 42 degrees C. This indicates that preformed CCC DNA does not participate in replication at the nonpermissive temperature. These results are consistent with the hypothesis that there are two modes of replication of Rts1 DNA, one involving a CCC molecule and the other not involving this form, and that only the latter mode takes place at the nonpermissive temperature.  相似文献   

13.
Incompatibility of the R plasmid Rts1 and its replication mutant pTW2 was studied in recA host cells of Escherichia coli. When the R plasmid R401, belonging to the same incompatibility group as Rts1, was used as a test plasmid, R401 was eliminated preferentially from (Rts-R401)+ cells irrespective of the direction of transfer. In contrast, pTW2 and R401 were mutually excluded. The decreased incompatibility of pTW2 was confirmed by a direct incompatibility test in which a derivative of Rts1 expelled pTW2 exclusively. Alkaline sucrose gradients of pTW2 and Rts1 DNA indicated that approximately one-fourth of the Rts1 genome was deleted in pTW2. In addition, both the various temperature-dependent properties of Rts1 and the inhibitory effect on phage T4 development were also lost in pTW2. A possible mechanism that regulates the stringent replication of Rts1 is discussed.  相似文献   

14.
Summary The yeast Kluyveromyces lactis haboring linear DNA plasmids pGKL1 and pGKL2 exhibits killer and killer-resistant phenotypes. Two new linear plasmids pK192L and pK192S were found in the weak killer mutant KUV192 induced by UV irradiation. pK192S was always accompanied by pK192L in subclones of KUV192. Both plasmids were derived from pGKL1 by deletion of the large right part of it. pK192L was 4.9 kb in size and had a palindromic structure consisting of 2.35 kb inverted terminal repetitions and a 215 base unique sequence. Analysis of denatured and renatured DNA strands suggested that pK192S was a hairpin-like form of pK192L. The pK192 plasmids were maintained only in cells haboring either pGKL1 or pGKL1S in addition to pGKL2 and competed with pGKL1 or pGKL1S for their maintenance. Since no complete ORF1 was conserved in pK192 plasmids, these results lead to the conclusion that the ORF1 gene is necessary for the replication and/or maintenance of pGKL1.  相似文献   

15.
16.
17.
An R plasmid Rts1 was integrated into the gal region of the chromosome of Escherichia coli XA-7012 (galE) strain by the directed transposition technique. The integration of the Rts1 genome was confirmed mainly by conjugation studies and also by transduction experiments using phage P1. As a result, it was found that the integrated genome contained genes responsible for kanamycin resistance, conjugal transferability, and for autonomous replication. As reported previously, Rts1 is temperature sensitive in replication and inhibits the growth of the host at nonpermissive temperature. However, although a plasmid derived from the integrated Rts1 genome still demonstrates temperature sensitivity upon transfer and high level of kanamycin resistance, this plasmid no longer displays temperature sensitivity in replication and the inhibitory effect on the host. These results indicate that the temperature sensitivity of replication of Rts1 and its inhibitory effect on the host cell are due to the presence of a gene or gene cluster on the Rts1 genome and that the gene(s) is clearly discriminated from the one responsible for the temperature sensitivity of transfer.  相似文献   

18.
19.
While several Thermus genes have been cloned and T. thermophilus has been shown to be transformable, molecular genetic studies of these thermophiles have been hampered by the absence of selectable cloning vectors. We have constructed a selectable plasmid by random insertion of a heterologous gene encoding a thermostable kanamycin nucleotidyltransferase activity into a cryptic, multicopy plasmid from T. thermophilus HB8. This plasmid should serve as a suitable starting point for the development of a gene expression system for T. thermophilus.  相似文献   

20.
While several Thermus genes have been cloned and T. thermophilus has been shown to be transformable, molecular genetic studies of these thermophiles have been hampered by the absence of selectable cloning vectors. We have constructed a selectable plasmid by random insertion of a heterologous gene encoding a thermostable kanamycin nucleotidyltransferase activity into a cryptic, multicopy plasmid from T. thermophilus HB8. This plasmid should serve as a suitable starting point for the development of a gene expression system for T. thermophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号