首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amitochondriate protistan parasite Entamoeba histolytica has lost most mitochondrial functions secondarily but has retained a reduced organelle of mitochondrial origin, the mitosome. We here investigate the presence, origins, and expression in other species of Entamoeba of three genes of mitochondrial origin--pyridine nucleotide transhydrogenase and the mitochondrial-type chaperonins cpn60 and hsp70. The genes appear to be present in all species and specifically related, confirming that the E. histolytica mitosomal genes were not acquired recently by lateral transfer from another organism. Detection of expression was not possible in all cases under the culture conditions used, but several genes were induced during recovery from exposure to a heat shock. This includes the transhydrogenase, which to our knowledge has not been shown previously to be a heat-shock protein.  相似文献   

2.
Entamoeba histolytica is a microaerophilic protozoan parasite in which neither mitochondria nor mitochondrion-derived organelles have been previously observed. Recently, a segment of an E. histolytica gene was identified that encoded a protein similar to the mitochondrial 60-kDa heat shock protein (Hsp60 or chaperonin 60), which refolds nuclear-encoded proteins after passage through organellar membranes. The possible function and localization of the amebic Hsp60 were explored here. Like Hsp60 of mitochondria, amebic Hsp60 RNA and protein were both strongly induced by incubating parasites at 42 degreesC. 5' and 3' rapid amplifications of cDNA ends were used to obtain the entire E. histolytica hsp60 coding region, which predicted a 536-amino-acid Hsp60. The E. histolytica hsp60 gene protected from heat shock Escherichia coli groEL mutants, demonstrating the chaperonin function of the amebic Hsp60. The E. histolytica Hsp60, which lacked characteristic carboxy-terminal Gly-Met repeats, had a 21-amino-acid amino-terminal, organelle-targeting presequence that was cleaved in vivo. This presequence was necessary to target Hsp60 to one (and occasionally two or three) short, cylindrical organelle(s). In contrast, amebic alcohol dehydrogenase 1 and ferredoxin, which are bacteria-like enzymes, were diffusely distributed throughout the cytosol. We suggest that the Hsp60-associated, mitochondrion-derived organelle identified here be named "crypton," as its structure was previously hidden and its function is still cryptic.  相似文献   

3.
Unicellular eukaryotes that lack mitochondria typically contain related organelles such as hydrogenosomes or mitosomes. To characterize the evolutionary diversity of these organelles, we conducted an expressed sequence tag (EST) survey on the free-living amoeba Mastigamoeba balamuthi, a relative of the human parasite Entamoeba histolytica. From 19 182 ESTs, we identified 21 putative mitochondrial proteins implicated in protein import, amino acid interconversion and carbohydrate metabolism, two components of the iron-sulphur cluster (Fe-S) assembly apparatus as well as two enzymes characteristic of hydrogenosomes. By immunofluorescence microscopy and subcellular fractionation, we show that mitochondrial chaperonin 60 is targeted to small abundant organelles within Mastigamoeba. In transmission electron micrographs, we identified double-membraned compartments that likely correspond to these mitochondrion-derived organelles, The predicted organellar proteome of the Mastigamoeba organelle indicates a unique spectrum of functions that collectively have never been observed in mitochondrion-related organelles. However, like Entamoeba, the Fe-S cluster assembly proteins in Mastigamoeba were acquired by lateral gene transfer from epsilon-proteobacteria and do not possess obvious organellar targeting peptides. These data indicate that the loss of classical aerobic mitochondrial functions and acquisition of anaerobic enzymes and Fe-S cluster assembly proteins occurred in a free-living member of the eukaryote super-kingdom Amoebozoa.  相似文献   

4.
Mitochondrion-related organelles, mitosomes and hydrogenosomes, are found in a phylogenetically broad range of organisms. Their components and functions are highly diverse. We have previously shown that mitosomes of the anaerobic/microaerophilic intestinal protozoan parasite Entamoeba histolytica have uniquely evolved and compartmentalized a sulfate activation pathway. Although this confined metabolic pathway is the major function in E. histolytica mitosomes, their physiological role remains unknown. In this study, we examined the phenotypes of the parasites in which genes involved in the mitosome functions were suppressed by gene silencing, and showed that sulfate activation in mitosomes is important for sulfolipid synthesis and cell proliferation. We also demonstrated that both Cpn60 and unusual mitochondrial ADP/ATP transporter (mitochondria carrier family, MCF) are important for the mitosome functions. Immunoelectron microscopy demonstrated that the enzymes involved in sulfate activation, Cpn60, and mitochondrial carrier family were differentially distributed within the electron dense, double membrane-bounded organelles. The importance and topology of the components in E. histolytica mitosomes reinforce the notion that they are not "rudimentary" or "residual" mitochondria, but represent a uniquely evolved crucial organelle in E. histolytica.  相似文献   

5.
Recent data suggest that microaerophilic and parasitic protozoa, which lack oxidative phosphorylation, nevertheless contain mitochondrial homologs [1-6], organelles that share common ancestry with mitochondria. Such widespread retention suggests there may be a common function for mitochondrial homologs that makes them essential for eukaryotic cells. We determined the mitochondrial carrier family (MCF) complement of the Entamoeba histolytica mitochondrial homolog, also known as a crypton [5] or more commonly as a mitosome [3]. MCF proteins support mitochondrial metabolic energy generation, DNA replication, and amino-acid metabolism by linking biochemical pathways in the mitochondrial matrix with those in the cytosol [7]. MCF diversity thus closely mirrors important facets of mitochondrial metabolic diversity. The Entamoeba histolytica mitosome has lost all but a single type of MCF protein, which transports ATP and ADP via a novel mechanism that is not reliant on a membrane potential. Phylogenetic analyses confirm that the Entamoeba ADP/ATP carrier is distinct from archetypal mitochondrial ADP/ATP carriers, an observation that is supported by its different substrate and inhibitor specificity. Because many functions of yeast and human mitochondria rely on solutes transported by specialized members of this family, the Entamoeba mitosome must contain only a small subset of these processes requiring adenine nucleotide exchange.  相似文献   

6.
Chaperonins are ubiquitous proteins that facilitate protein folding in an adenosine triphosphate-dependent manner. Here we report the isolation of a sea urchin cDNA (Plhsp60) coding for mitochondrial chaperonin (Cpn60), whose basal expression is further enhanced by heat shock. The described cDNA corresponds to a full-length mRNA encoding a protein of 582 amino acids, the first 32 of which constitute a putative mitochondrial targeting leader sequence. Comparative analysis has demonstrated that this protein is highly conserved in evolution.  相似文献   

7.
The cDNA for Chinese hamster mitochondrial Hsp70 (mHsp70) was cloned and sequenced using a polymerase chain reaction probe based on conserved regions in the Hsp70 family of proteins. The encoded protein consists of 679 amino acids which includes a N-terminal mitochondrial targeting sequence of 46 amino acids. The mHsp70 protein contains several sequence signatures that are characteristics of prokaryotic and eukaryotic organellar Hsp70 homologs. In a phylogenetic tree based on Hsp70 sequences, it branches with the gram-negative proteobacteria, supporting the endosymbiotic origin of mitochondria from this group of prokaryotes. The mHsp70 cDNA was transcribed and translatedin vitroand its import into isolated rat heart mitochondria was examined. The precursor mHsp70 was converted into a mature form of lower molecular mass (≈71 kDa) which became resistant to trypsin digestion. The import of mHsp70 into mitochondria was not observed in the presence of an uncoupler of energy metabolism or when the N-terminal presequence was lacking. The cDNA for mHsp70 was expressed inEscherichia coliand a polyclonal antibody to the purified recombinant protein was raised. The antibody shows no cross-reactivity to recombinant cytosolic Hsp70 protein and in 2-D gel blots it reacted specifically with the mHsp70 protein only. In immunofluorescence experiments, the antibody predominantly labeled mitochondria, and the observed labeling pattern was identical to that seen with a monoclonal antibody to the mitochondrial Hsp60 chaperonin. The affinity-purified antibody to mHsp70 was also employed to examine the subcellular distribution of the protein by cryoelectron microscopy and the immunogold-labeling technique. In these experiments, in addition to mitochondria, labeling with mitochondrial Hsp70 antibody was also observed on the plasma membrane and in unidentified cytoplasmic vesicles and granules. These studies raise the possibility that similar to the Hsp60 chaperonin and a number of other mitochondrial proteins, mHsp70 may have an extramitochondrial role.  相似文献   

8.
Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis.  相似文献   

9.
Several actin-binding proteins participate in the morphological changes that occur during amoeboid movement. The gene encoding one of these proteins, the gelation factor ABP-120, was identified and characterized from trophozoites of Entamoeba histolytica . The sequence contains 2574 nucleotides, with an open reading frame of 858 amino acids, giving a protein of 93 kDa belonging to the spectrin family. The N-terminal domain of ABP-120 from E. histolytica revealed a consensus site for actin binding homologous to the actin-binding sites of ABP-120 of Dictyostelium discoideum , α-actinin and spectrin. Analysis of the central domain revealed the presence of four repeats of a 73-amino-acid motif constituting 31% of the protein. In addition, a stretch of 105 amino acids was highly divergent when compared with the C-terminal domain of D. discoideum ABP-120. This sequence showed short motifs that are homologous to microtubule-binding domains. We found that ABP-120 from E. histolytica binds to F-actin. In addition, upon motility of the parasite, this protein localized in the pseudopod and the uroid region, implying a role for ABP-120 in movement and capping of surface receptors in E. histolytica .  相似文献   

10.
The ADP/ATP translocator, a transmembrane protein of the mitochondrial inner membrane, is coded in Saccharomyces cerevisiae by the nuclear gene PET9. DNA sequence analysis of the PET9 gene showed that it encoded a protein of 309 amino acids which exhibited a high degree of homology with mitochondrial translocator proteins from other sources. This mitochondrial precursor, in contrast to many others, does not contain a transient presequence which has been shown to direct the posttranslational localization of proteins in the organelle. Gene fusions between the PET9 gene and the gene encoding beta-galactosidase (lacZ) were constructed to define the location of sequences necessary for the mitochondrial delivery of the ADP/ATP translocator protein in vivo. These studies reveal that the information to target the hybrid molecule to the mitochondria is present within the first 115 residues of the protein. In addition, these studies suggest that the "import information" of the amino-terminal region of the ADP/ATP translocator precursor is twofold. In addition to providing targeting function of the precursor to the organelle, these amino-terminal sequences act to prevent membrane-anchoring sequences located between residues 78 and 98 from stopping import at the outer mitochondrial membrane. These results are discussed in light of the function of distinct protein elements at the amino terminus of mitochondrially destined precursors in both organelle delivery and correct membrane localization.  相似文献   

11.
12.
Mitochondrial remnant organelles (mitosomes) that exist in a range of "amitochondrial" eukaryotic organisms represent ideal models for the study of mitochondrial evolution and for the establishment of the minimal set of proteins required for the biogenesis of an endosymbiosis-derived organelle. Giardia intestinalis, often described as the earliest branching eukaryote, contains double membrane-bounded structures involved in iron-sulfur cluster biosynthesis, an essential function of mitochondria. Here we present evidence that Giardia mitosomes also harbor Cpn60, mtHsp70, and ferredoxin and that despite their advanced state of reductive evolution they have retained vestiges of presequence-dependent and -independent protein import pathways akin to those that operate in mammalian mitochondria. Although import of IscU and ferredoxin is still reliant on their amino-terminal presequences, targeting of Giardia Cpn60, IscS, or mtHsp70 into mitosomes no longer requires cleavable presequences, a derived feature from their mitochondrial homologues. In addition, we found that division and segregation of a single centrally positioned mitosome tightly associated with the microtubular cytoskeleton is coordinated with the cell cycle, whereas peripherally located mitosomes are inherited into daughter cells stochastically.  相似文献   

13.
Recognition of mitochondrial targeting signals (MTS) by receptor translocases of outer and inner membranes of mitochondria is one of the prerequisites for import of nucleus-encoded proteins into this organelle. The MTS for a majority of trypanosomatid mitochondrial proteins have not been well defined. Here we analyzed the targeting signal for trypanosome alternative oxidase (TAO), which functions as the sole terminal oxidase in the infective form of Trypanosoma brucei. Deleting the first 10 of 24 amino acids predicted to be the classical N-terminal MTS of TAO did not affect its import into mitochondria in vitro. Furthermore, ectopically expressed TAO was targeted to mitochondria in both forms of the parasite even after deletion of first 40 amino acid residues. However, deletion of more than 20 amino acid residues from the N terminus reduced the efficiency of import. These data suggest that besides an N-terminal MTS, TAO possesses an internal mitochondrial targeting signal. In addition, both the N-terminal MTS and the mature TAO protein were able to target a cytosolic protein, dihydrofolate reductase (DHFR), to a T. brucei mitochondrion. Further analysis identified a cryptic internal MTS of TAO, located within amino acid residues 115 to 146, which was fully capable of targeting DHFR to mitochondria. The internal signal was more efficient than the N-terminal MTS for import of this heterologous protein. Together, these results show that TAO possesses a cleavable N-terminal MTS as well as an internal MTS and that these signals act together for efficient import of TAO into mitochondria.  相似文献   

14.
Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle.  相似文献   

15.
The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells.  相似文献   

16.
Trichomonads are early-diverging eukaryotes that lack both mitochondria and peroxisomes. They do contain a double membrane-bound organelle, called the hydrogenosome, that metabolizes pyruvate and produces ATP. To address the origin and biological nature of hydrogenosomes, we have established an in vitro protein import assay. Using purified hydrogenosomes and radiolabeled hydrogenosomal precursor ferredoxin (pFd), we demonstrate that protein import requires intact organelles, ATP and N-ethylmaleimide-sensitive cytosolic factors. Protein import is also affected by high concentrations of the protonophore, m-chlorophenylhydrazone (CCCP). Binding and translocation of pFd into hydrogenosomes requires the presence of an eight amino acid N-terminal presequence that is similar to presequences found on all examined hydrogenosomal proteins. Upon import, pFd is processed to a size consistent with cleavage of the presequence. Mutation of a conserved leucine at position 2 in the presequence to a glycine disrupts import of pFd into the organelle. Interestingly, a comparison of hydrogenosomal and mitochondrial protein presequences reveals striking similarities. These data indicate that mechanisms underlying protein targeting and biogenesis of hydrogenosomes and mitochondria are similar, consistent with the notion that these two organelles arose from a common endosymbiont.  相似文献   

17.
Microsporidia, an unusual group of unicellular parasites related to fungi, possess a highly reduced mitochondrion known as the mitosome. Since mitosomes lack an organellar genome, their proteins must be translated in the cytosol before being imported into the mitosome via translocases. We have identified a Tom40 gene (NbTom40), the main component of the translocase of the outer mitochondrial membrane, in the genome of the microsporidian Nosema bombycis. NbTom40 is reduced in size, but it is predicted to form a β-barrel structure composed of 19 β-strands. Phylogenetic analysis confirms that NbTom40 forms a clade with Tom40 sequences from other species, distinct from a related clade of voltage-dependent anion channels (VDACs). The NbTom40 contains a β-signal motif that the polar residue is substituted by glycine. Furthermore, we show that expression of NbTom40, as a GFP fusion protein within yeast cells, directs GFP to mitochondria of yeast. These findings suggest that NbTom40 may serve as an import channel of the microsporidian mitosome and facilitate protein translocation into this organelle.  相似文献   

18.
19.
The sorting of homologous proteins between two separate intracellular organelles is a major unsolved problem. 3-Oxoacyl-CoA thiolase is localized in mitochondria and peroxisomes, and provides a good system for the study on the problem. Unlike most mitochondrial matrix proteins, mitochondrial 3-oxoacyl-CoA thiolase in rats is synthesized with no transient presequence and possess information for mitochondrial targeting and import in the mature protein. Two overlapping cDNA clones contained an open reading frame encoding a polypeptide of 397 amino acid residues (predicted Mr = 41,868), a 5' untranslated sequence of 164 bp, a 3' untranslated sequence of 264 bp and a poly(A) tract. The amino acid sequence of the mitochondrial thiolase is 37% identical with that of the mature portion of rat peroxisomal 3-oxoacyl-CoA thiolase precursor. These results suggest that the two thiolases have a common origin and obtained information for targeting to respective organelles during evolution. Two portions in the mitochondrial thiolase that may serve as a mitochondrial targeting signal are presented.  相似文献   

20.
A family of structurally related carrier proteins mediates the flux of metabolites across the mitochondrial inner membrane. Differently from most other mitochondrial proteins, members of the carrier family are synthesized without an amino-terminal targeting sequence. However, in some mammalian and plant species, representatives were identified that carry a positively charged presequence. To obtain data on a carrier protein from lower vertebrates, we determined the primary structure of eel mitochondrial citrate carrier (CIC) and investigated its import pathway into the target organelle. The protein carries a cleavable presequence of 20 amino acids, including two positively charged residues. The cleavage site is recognized by a magnesium-dependent peptidase in the intermembrane space. The presequence is dispensable both for targeting and translocation, but prior to import into mitochondria, significantly increases the solubility of the precursor protein. This effect is completely retained if the positive charges are exchanged with negative charges. Following this observation, we found that several carrier proteins appear to carry non-cleavable presequences that may similarly act as charged intramolecular chaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号