首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eckhard Loos  Doris Meindl 《Planta》1982,156(3):270-273
Isolated cell walls of mature Chlorella fusca consisted of about 80% carbohydrate, 7% protein, and 13% unidentified material. Mannose and glucose were present in a ratio of about 2.7:1 and accounted for most of the carbohydrate. Minor components were glucuronic acid, rhamnose, and traces of other sugars; galactose was absent. After treatment with 2 M trifluoroacetic acid or with 80% acetic acid/HNO3 (10/1, v/v), a residue with a mannose/glucose ratio of 0.3:1 was obtained, probably representing a structural polysaccharide. An X-ray diffraction diagram of the walls showed one diffuse reflection at 0.44 nm and no reflections characteristic of cellulose. Walls from young cells contained about 51% carbohydrate, 12% protein, and 37% unidentified material. Mannose and glucose were also the main sugars; their absolute amounts per wall increased 6–7 fold during cell growth. Walls isolated with omission of a dodecylsulphate/mercaptoethanol/urea extraction step had a higher protein content and, with young walls, a significantly higher glucose and fucose content. These data and other published cell wall analyses show a wide variability in cell wall composition of the members of the genus Chlorella.Abbreviations GLC gas liquid chromatography - TFA trifluoroacetic acid  相似文献   

2.
Thiobacillus denitrificans strain RT could be grown anaerobically in batch culture on thiosulfate but not on other reduced sulfur compounds like sulfide, elemental sulfur, thiocyanate, polythionates or sulfite. During growth on thiosulfate the assimilated cell sulfur was derived totally from the outer or sulfane sulfur. Thiosulfate oxidation started with a rhodanese type cleavage between sulfane and sulfone sulfur leading to elemental sulfur and sulfite. As long as thiosulfate was present elemental sulfur was transiently accumulated within the cells in a form that could be shown to be more reactive than elemental sulfur present in a hydrophilic sulfur sol, however, less reactive than sulfane sulfur of polythionates or organic and inorganic polysulfides. When thiosulfate had been completely consumed, intracellular elemental sulfur was rapidly oxidized to sulfate with a specific rate of 45 natom S°/min·mg protein. Extracellularly offered elemental sulfur was not oxidized under anaerobic conditions.  相似文献   

3.
Ferredoxin-NADP+ reductase (FNR, EC I.18.1.2) from the green algae Chlorella fusca Shihira et Kraus 211–15, was purified to homogeneity. The molecular mass was 36.8 kDa as determined by SDS-polyacrylamide gel electrophoresis. The enzyme exhibits the typical spectrum of a flavoprotein with an absorption maximum at 459 nm and an A273/459 ratio of 7.2. It contains one mol of FAD per mol of protein and the calculated extinction coefficient is 9.8 m M cm−1. Four different forms of the purified enzyme were detected by isoelectric focusing (pI between 5.4 and 5.9), even when protease inhibitors were used during the first steps of the purification. Kinetic parameters were determined for several FNR-catalyzed reactions. NADP+ photoreduction gave comparable rates when either ferredoxin or flavodoxin was used.  相似文献   

4.
[Fe]-hydrogenases are redoxenzymes that catalyze the reversible reduction of protons to hydrogen. Hydrogenase activity was observed in a culture of the unicellular green alga Chlorella fusca after an anaerobic incubation, but not in the related species Chlorella vulgaris. Specific polymerase chain reaction (PCR) techniques lead to the isolation of the cDNA and the genomic DNA of a special type of [Fe]-hydrogenase in C. fusca. The functional [Fe]-hydrogenase was purified to homogeneity and its N-terminus was sequenced. The polypeptide sequence shows a high degree of identity with the amino acid sequence deduced from the respective cDNA region. Structural and biochemical analyses indicate that ferredoxin is the main physiological electron donor.  相似文献   

5.
O-Dealkylations of resorufin and coumarin ethers, mediated by microsomal cytochrome P450 mono-oxygenases from animals, plants and microorganisms, are shown here to be performed also by intact cells of the unicellular green algaeChlorella fusca andChlorella sorokiniana. The activity of theO-dealkylation of these ethers was up to tenfold higher withChlorella sorokiniana. Both algae dealkylated methyl-, ethyl-, and pentylethers of resorufin and coumarin. Dealkylation in vivo indicated efficient absorption of methoxy- and ethoxyresorufin, confirmed by the respective absorption kinetics. Piperonylbutoxide and 1-aminobenzotriazole, known inhibitors of plant and mammalian cytochrome P450s, significantly inhibited theO-dealkylase activity of both algal strains. The use of synchronized cultures of both algae revealed that efficiency ofO-dealkylation depends on the stage of the cell cycle: during the growth phase, theO-dealkylase activities increased more than proportional, and the distinct drop in activity during the last hours of the light period indicated the appearance of an endogenous substrate.  相似文献   

6.
E. Loos  D. Meindl 《Planta》1985,166(4):557-562
A cell-wall-degrading activity was solubilized from young cells and from mother cell walls of Chlorella fusca by treatment with LiCl. The cytoplasmic enzyme hexokinase was not detectable in these extracts. The LiCl-solubilized activity increased in the cell cycle parallel to the release of autospores. The enzyme was purified on a chromatofocusing column followed by gel filtration. Sodium dodecyl sulfate/polyacryl amide gel electrophoresis of the purified enzyme revealed a molecular weight of 44 kDa, whereas gel filtration indicated a molecular weight of 25 kDa. Cell-wall-lytic activity and -1,4-mannanase activity coeluted in gel filtration and were separated from -d-fucosidase activity. The enzyme degraded isolated cell walls and ivory nut mannan primarily to oligosaccharides with an estimated degree of polymerization 6. The soluble degradation products of the cell wall consisted of 92–96% mannose and 4–8% glucose. It is concluded that the cell-wall-lytic activity is caused by an endo-mannanase. In vivo, this enzyme probably degrades the mother cell wall and, after autospore release, remains bound to it as well as to the surface of the daughter cells by ionic forces. The identity of this bound enzyme with a soluble wall-degrading enzyme previously obtained from mother cells is discussed.  相似文献   

7.
The CO2-concentrating mechanism (CCM) was induced in the green unicellular alga Chlorella when cells were transferred from high (5% CO2) to low (0.03%) CO2 concentrations. The induction of the CCM correlated with the formation of a starch sheath specifically around the pyrenoid in the chloroplast. With the aim of clarifying whether the starch sheath was involved in the operation of the CCM, we isolated and physiologically characterized a starchless mutant of Chlorella pyrenoidosa, designated as IAA-36. The mutant strain grew as vigorously as the wild type under high and low CO2 concentrations, continuous light and a 12 h light/12 h dark photoperiod. The CO2 requirement for half-maximal rates of photosynthesis [K0.5(CO2)] decreased from 40 μM to 2–3 μM of CO2 when both wild type and mutant were switched from high to low CO2. The high affinity for inorganic carbon indicates that the IAA-36 mutant is able to induce a fully active CCM. Since the mutant does not have the pyrenoid starch sheath, we conclude that the sheath is not involved in the operation of the CCM in Chlorella cells.  相似文献   

8.
Batch cultures of Chlorella fusca excreted nitrite into the medium if gassed with air (0.03% CO2), but they did not if supplied with air containing 5% CO2. After a change from high to low CO2 concentration in the gas stream, nitrite excretion started immediately. After an increase in CO2 concentration to 5%, nitrite uptake started within only 30 min. Changes of in-vitro activities of nitrate reductase, nitrite reductase and glutamine synthetase did not correspond to changes of nitrite concentration in the medium and therefore could not explain these observations. A nitrite-binding site, whose activity corresponded with both nitrite excretion and uptake, was detected at the chloroplast envelope. From these data an additional regulatory step in the assimilatory nitrate-reduction sequence is suggested. This includes an envelopeprotein fraction probably regulating the availability of nitrite within the chloroplast.Abbreviations FMN riboflavin 5-phosphate - GS glutamine synthetase - NIR nitrite reductase - NR nitrate reductase  相似文献   

9.
A periplasmic thiosulfate dehydrogenase (EC 1.8.2.2) was purified to homogeneity from the neutrophilic, obligately chemolithoautotrophicThiobacillus sp. W5. A five-step procedure resulted in an approximately 2,300-fold purification. The purified protein had a molecular mass of 120±3 kDa, as determined by gel filtration. It is probably a tetramer containing two different subunits with molecular masses of 33±1 kDa and 27±0.5 kDa, as determined by SDS-PAGE. UV/visible spectroscopy revealed that the enzyme contained haemc; haem staining showed that both subunits contained haemc. A haemc content of 4 mol per mol of enzyme was calculated using the pyridine haemochrome test. The pH optimum of the enzyme was 5.5 At pH 7.5, the Km and Vmax were 120±10 M and 1,160±30 U mg-1, respectively. The absence of 2-heptyl-4-hydroquinoline-N-oxide (HQNO) inhibition for the oxidation of thiosulfate by whole cells suggested that the electrons enter the respiratory chain at the level of cytochromec. Comparison with thiosulfate dehydrogenases from otherThiobacillus species showed that the enzyme was structurally similar to the thiosulfate dehydrogenase of the acidophilic, facultatively chemolithoautotrophicThiobacillus acidophilus, but not to the thiosulfate dehydrogenases published for the obligately chemolithoautotrophicThiobacillus tepidarius andThiobacillus thioparus.Abbreviations BV Benzyl viologen - DCPIP 2,6-Dichloroindophenol - HQNO 2-Heptyl-4-hydroquinoline-N-oxide - NEM N-ethylmaleimide - PES Phenazine ethosulfate - PMS Phenazine methosulfate  相似文献   

10.
Low production rates and sensitivity to O2 are two major obstacles which prevent the technical exploitation of the ability of green algae to produce H2 from water. Both problems were addressed in the present work. The inhibitory effect of O2 on the hydrogen photoproduction of the green alga Chlorella fusca could be minimized by using algal cells which had not yet fully restored their oxygen evolving capacities after an artificially induced chloroplast de/regeneration cycle (de-/regreening). The H2 photoproductivity peaked after 30 h of greening light while the O2 evolution at this time reached only 59% of its normal capacity. The H2PP yields could be further increased if NH4Cl was added to the reaction medium at the beginning of the anaerobic preincubation period. No stimulatory effect was observed when NH4Cl was added just before illumination, i.e. at the end of the 5-h-preincubation period. It is assumed that NH4Cl inhibited the photosynthetic reduction of nitrite, which competed with hydrogen photoproduction indirectly by feedback repression of the NO 2 - /NO 3 - -reductive system. The impacts of the given results on an optimized H2-production in green algae based on photosynthesis are discussed.Abbreviations H2PP H2 photoproduction - H2ase hydrogenase - DA dark adaptation - LRG light regreening - DCMU 3-(3,4-dichlorophenyl)-l, 1-dimethylurea - Dit sodium dithionite - HEPES N-2-hydroxyethylpiperazin-N-2-ethan-sulfonic acid - PS I/II photosystem I/II  相似文献   

11.
Nitrate reductase (NR) (EC 1.6.6.2) from Chlorella variegata 211/10d has been purified by blue sepharose affinity chromatography. The enzyme can utilise NADH or NADPH for nitrate reduction with apparent K m values of 11.5 M and 14.5 M, respectively. Apparent K m values for nitrate are 0.13 mM (NADH-NR) and 0.14 mM (NADPH-NR). The diaphorase activity of the enzyme is inhibited strongly by parachloromercuribenzoic acid; NADH or NADPH protects the enzyme against this inhibition. NR proper activity of the enzyme is partially inactive after extraction and may be activated after the addition of ferricyanide. The addition of NAD(P)H and cyanide causes a reversible inactivation of the NR proper activity although preincubation with either NADH or NADH and ADP has no significant effect.Abbreviations NR Nitrate reductase - FAD Flavin-adenine dinucleotide - FMN Riboflavin 5-phosphate - p-CMB para-Chloromercuribenzoic - BV Benzyl viologen  相似文献   

12.
The distribution of microbial aldo-keto reductases was examined and their immunochemical characterization was performed. p-Nitrobenzaldehyde, pyridine-3-aldehyde and ethyl 4-chloro-3-oxobutanoate reductase activities were found to be widely distributed in a variety of microorganisms. In immunodiffusion studies, most yeasts belonging to the genera Sporobolomyces, Sporidiobolus and Rhodotorula formed precipitin bands with anti-Sporobolomyces salmonicolor aldehyde reductase serum. Furthermore, the results of immunotitration experiments suggested that Sporobolomyces salmonicolor AKU 4429 contains other enzyme(s) which can reduce p-nitrobenzaldehyde, pyridine-3-aldehyde and/or ethyl 4-chloro-3-oxobutanoate, and which are inactivated by anti-Sporobolomyces salmonicolor aldehyde reductase serum.  相似文献   

13.
Chlorella fusca can utilize the following substances as sole sulfur sources for growth: C1 to C8 n-alkane-1-sulfonates, linear alkylbenzenes sulfonates (LAS), -sulfonated fatty acid esters, polyethylene glycol sulfate and alkylsulfates. Good sulfur sources are alkylsulfonic acids, which are comparable to sulfate. Ethanesulfonic acid was used for comparison of the growth on sulfate and on a sulfonic acid, because best growth was achieved on this C2-sulfonic acid.Growth data of Chlorella on the enviromental important detergents linear alkylbenzene sulfonic acids, -sulfonated fatty acid methylester, Texapon and Sulfopon are presented. So far only microorganisms have been discussed as a source for degradation of sulfonic acids and detergents. It is suggested that green algae could be of similar importance for the biodegradation of these compounds.Abbreviations LAS Linear alkylbenzene sulfonate - ES -sulfonated fatty acid methylester - DTE dithiocrythritol  相似文献   

14.
Mitochondrial (mt) DNA from the unicellular, exsymbiotic Chlorella-like green alga, strain Nla was isolated and cloned. The mtDNA has a buoyant density of 1.692 g/ml in CsCl and an apparent G/C base composition of 32.5%. The genome contains approximately 76 kbp of DNA based on restriction fragment summation and electron microscopic measurements. A map of restriction endonuclease sites using Sst I, Bam I, Sal I and Xho I was generated. The genome maps as a circular molecule and appears as such under the electron microscope. Eight genes were assigned to the map by hybridization to specific restriction fragments using heterologous mt-encoded specific probes. These include the genes for subunits 6, 9, and alpha of the F0-F1 ATPase complex, the large and small subunit rRNAs, cytochrome oxidase subunits I and II, and apocytochrome b.  相似文献   

15.
The possibility to apply N-15 in vivo NMR spectroscopy to study algal N-metabolism has been investigated. N-15 labelled cells of the green alga Chlorella fusca, subjected to nitrogen starvation and N-14 labelled cells supplied with K15NO3 after prolonged nitrogen starvation were monitored by N-15 in vivo NMR spectroscopy at different times after the change in their nitrogen supply. During 20–40 min, necessary for the acquisition of 1 spectrum, the cells were under dark anaerobic conditions, but the relative amounts of the metabolites detected did not change. Signals from 2 acid amides, from the side chain nitrogens of arginine and lysine, from prolin as well as 4 signals from α amino groups of amino acids were detected. Besides two signals not yet reported in the literature were found. They may be due to amino compounds, but not to amino acids. The amount of free amino acids in the cells increases not only upon resupply of nitrogen starved cells with nitrate but also during the first hours after nitrate depletion. The spectra obtained from N-15 labelled autospores show that N-15 in vivo NMR spectroscopy can be applied to the investigation of N metabolism of the cells.  相似文献   

16.
The pH in the cytoplasm of aerobic and anaerobic cells of the green algae Chlorella fusca and Chlorella vulgaris was determined in dependence on the pH of the external medium, which was varied between pH 3 and pH 10. In aerobic cells of both species the cytoplasmic pH is maintained at a value above 7.2 even at an external pH of 3 and below 7.8 at an external pH of 10. In anaerobic cells the cytoplasmic pH shows linear dependence on external pH in the range of pH 6 to 9 (cytoplasmic pH 6.9 to 7.2), while below an external pH of 6 cytoplasmic pH is maintained at about 6.5.Abbreviations CCCP Carbonylcyanide-m-chlorophenyl-hydrazone - EDTA Ethylendiaminetetraacetic acid - MES 2-(N-Morpholino)-ethanesulfonic acid - MOPSO 3-(N-Morpholino)-2-hydroxy-propanesulfonic acid - NMR Nuclear Magnetic Resonance - pH cyt cytoplasmic pH - pH ex external pH - PIPES Piperazine-N,N-bis(2-ethanesulfonic acid) - PPi Pyrophosphate - PP1, PP2, PP3 1st, 2nd, 3rd phosphate group of polyphosphates - PP4 core phosphate groups of polyphosphates - TRIS Tris-hydroxymethyl-aminomethane  相似文献   

17.
Rudolf Tischner 《Planta》1984,160(1):1-5
Chlorella sorokiniana possesses two forms of nitrate reductase (EC 1.6.6.1.). One with low activity is present in cells at the end of the light-dark cycle, the other with high activity is present after 1 h of illumination. The two forms can be distinguished by gel electrophoresis, isopycnic centrifugation, assay of the partial reactions and their sensitivity to antibodies, respectively. These differences are discussed with respect to an effect of intracellular nitrate on the activation of nitrate reductase.Abbreviations NAR nitrate reductase - FMN flavine mononucleotide - MV methylviologen  相似文献   

18.
P-31 NMR investigations were performed with the green alga Chlorella fusca under anaerobic conditions in the dark and in the light.In spectra of cells in the dark the signal of intracellular, nonvacuolar Pi indicates a pH in its chemical environment of 7.0–7.2. Upon illumination this signal looses intensity and shifts to lower field, corresponding to a pH of 7.7. Further downfield no other signal that could be attributed to a Pi-pool in more alkaline environment was detected. By the use of 2-deoxyglucose-6-phosphate as an indicator of cytoplasmic pH, this Pi-signal was assigned to the cytoplasm. The pH increase in the cytoplasm upon transfer of cells from the dark to the light is the same as that previously observed upon transfer of cells from anaerobic to aerobic conditions.In cells performing only cyclic photophosphorylation the cytoplasmic pH is lower than in photosynthesizing cells but still 0.2 pH units higher than in the cells in the dark. The reasons for the missing of a signal of stromal Pi and for the difference in cytoplasmic pH in photosynthesizing cells and those capable only of cyclic photophosphorylation are discussed.Non-standard abbreviations 2dG 2-Deoxyglucose - dG-6-P 2-deoxyglucose-6-phosphate - DCMU 3,4-dichlorophenyl-dimethylurea - MOPSO 3-(N-morpholino)-2-hydroxypropane sulfonic acid - P-31 NMR P-31 nuclear magnetic resonance  相似文献   

19.
Candadai S. Ramadoss 《Planta》1979,146(5):539-544
Added vanadate ions inhibit purified nitrate reductase from Chlorella vulgaris by reacting with the enzyme in a manner rather similar to that of HCN. Thus vanadate, like HCN, forms an inactive complex with the reduced enzyme, and this inactivated enzyme can be reactivated rapidly by adding ferricyanide. The inactive vanadate enzyme complex is less stable than the inactive HCN complex, and the two can be distinguished by the fact that EDTA causes a partial reactivation of the former, but not of the latter. Vanadate can also cause an increase in HCN formation by intact Chlorella vulgaris cells. When these cells were incubated with vanadate, their nitrate reductase was reversibly inactivated, and all of this inactive enzyme could be shown to be the HCN complex rather than the vanadate complex. When HCN and vanadate are both present, the HCN-inactivated enzyme, being more stable, will be formed in preference to the vanadate-inactivated enzyme.Abbreviation EDTA ethylenediamine tetraacetate  相似文献   

20.
Taurine entered the alga Chlorella fusca Shihira et Krauss strain 21l-8b via a pH and energy-dependent system ("permease"). Transport followed triphasic kinetics from 10−6 to 10−2 M with Km values for taurine of 5.4 × 10−5, 4.1 × l0−4 and l.5 × 10−3 M. This uptake system was specific for sulfonic acids and showed no affinity for α- and β -amino acids or Na+; thus the permease of C. fusca is different from all known taurine transport systems with respect to structural specificity and lack of Na+ -dependence. Uptake was not observed in sulfate-grown algae but developed as a response to sulfate limitation within 2 h. Sulfate addition caused a rapid decline in taurine transport capacity. Labeled taurine was rapidly metabolized in C. fusca to sulfate and ethanolamine, suggesting oxidative hydrolysis as the mechanism of C-S bond cleavage. Further incorporation of these catabolic products in C - and S -metabolism was demonstrated. Taurine catabolism was also detected in other green algae and some cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号