首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
以冬小麦品种8901、5-98、99-92和104等品种的幼穗和幼胚为材料,用基因枪转化含逆境诱导转录因子DREB和bar基因的质粒pBAC128F(7024bp)。经筛选与植株再生,共获得70多个转基因小麦植株及其后代株系。转基因株系经PCR分析和RNA点杂交检测,结果表明外源转录因子DREB基因已稳定整合到转基因植株及其后代株系中,并且在部分后代株系中获得了表达。叶片脯氨酸含量测定表明,有16个转基因株系的脯氨酸含量与非转基因对照相比,增加相当显著,其中10个株系的脯氨酸含量在1100μg/g以上,比对照提高了2倍多。室内抗旱模拟实验表明,转基因株系停止浇水15d后,叶片仍然表现绿色,而对照叶片则失绿、枯干;复水10d后,转基因株系恢复活力,对照则死亡。研究表明,利用逆境诱导型启动子(rd29B)来增强外源DREB基因的表达,能显著改良小麦的抗旱性。  相似文献   

2.
3.
为了探索拟南芥AtCIPK23基因对烟草耐旱能力的影响,对3个转AtCIPK23基因阳性纯合株系KA13、KA14和KA44与野生型烟草K326(对照)进行了自然干旱处理,测定离体叶片的失水速率、叶绿素含量、相对电导率、脯氨酸和可溶性糖含量,并分析了转基因及野生型材料对活性氧的清除能力,对活性氧清除基因NtSODNtCATNtAPX及干旱胁迫相关基因NtDREBNtLEA5NtCDPK2的表达量进行检测。结果表明:(1)转基因烟草离体叶片的失水速率明显低于K326;自然干旱7 d后,野生型K326出现了明显的干旱胁迫症状;干旱7 d进行复水后,转基因株系的复水存活率明显高于K326。(2)转基因株系中的叶绿素、脯氨酸及可溶性糖含量比K326显著提高,电导率则明显降低。(3)野生型烟草K326中H2O2的积累量明显高于3个转基因株系,转基因株系中ROS清除机制的3个关键基因NtSODNtCATNtAPX被诱导上调表达。(4)抗旱相关基因NtDREBNtLEA5NtCDPK2仅在转基因烟草中受干旱诱导。研究认为,AtCIPK23基因可能具有提高植物抗旱能力的功能。  相似文献   

4.
5.
Expansins are proteins that are the key regulators of wall extension during plant growth. To investigate the role of TaEXPB23, a wheat expansin gene, we analyzed TaEXPB23 mRNA expression levels in response to water stress in wheat and examined the drought resistance of transgenic tobaccos over-expressing TaEXPB23. We found that the expression of TaEXPB23 corresponded to wheat coleoptile growth and the response to water stress. The results also indicated that the transgenic tobacco lines lost water more slowly than the wild-type (WT) plants under drought stress; their cells could sustain a more integrated structure under water stress than that of WT. Other physiological and biochemical parameters under water stress, such as electrolyte leakage, malondialdehyde (MDA) level, photosynthetic rate, Fv/Fm and ΦPSII, also suggested that the transgenic tobaccos were more drought resistant than WT plants.  相似文献   

6.
7.
脱水应答转录因子CBF1的克隆与转基因小麦的分子检测   总被引:1,自引:0,他引:1  
根据已发表的小麦(T.aestivum)转录因子CBF1基因序列(GenBank Accession No.AF376136),设计引物从小麦品种‘京花1号’叶片中克隆出该基因,用拟南芥RD29B基因为启动子构建含CBF1基因的逆境诱导表达载体pBAC127F(6 967 bp),以‘99-92’、‘5-98’、‘104’和‘轮选987’等冬小麦品种(系)的幼穗和幼胚为材料,基因枪转化该表达载体。经筛选与植株再生,共获得14株转基因植株及其后代株系。这14个株系经PCR分析和点杂交检测,最终确认了5-98-40、5-98-41这2个株系为转基因株系,结果表明拟南芥RD29B启动子调控下的转录因子CBF1基因已稳定整合到转基因植株中。  相似文献   

8.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

9.
Drought resistance is increased in plants by the absence of the hormone gibberellic acid (GA) or by a lack of GA sensitivity. We studied the effects of tissue-specific reduction in GA levels on drought tolerance, on recovery from drought stress, and on primary and secondary growth using transgenic tobacco plants expressing the GA-inactivating gene PtGA2ox 1 (GA 2-oxidase) specifically in leaves, stems, or roots. Localized reduction of bioactive GA1 levels was achieved by tissue-specific expression of the PtGA2ox 1 gene in leaves using the rbcs promoter (LD plants), in roots using the TobRB7 promoter (RD plants), and in stems using the LMX5 promoter (SD plants). In response to drought stress, all transgenic tobacco plants exhibited reduced primary and secondary growth and increased drought tolerance with a corresponding reduction in malondialdehyde levels, higher relative water content, increased proline and sugar content, and elevated peroxidase, superoxide dismutase, and catalase activities relative to wild-type plants. The highest level of drought tolerance and the most rapid recovery from stress was achieved by localized reduction of GA1 in the roots of the RD transgenic plants. In addition, although the total bioactive GA1 content in RD and LD plants was essentially identical, the heights of LD plants were significantly greater and drought tolerance was significantly less than in RD plants. It is possible that the site of gibberellin-related gene expression plays an important role in the balance between growth and drought tolerance.  相似文献   

10.
Large number of primary transgenic events were generated in groundnut by an Agrobacterium mediated, in planta transformation method to assess the efficacy of cry1AcF against the Spodoptera litura. The amplification of required size fragment of 750 bp with npt II primers and 901 bp with cry1AcF gene primers confirmed the integration of the gene. The expression of the cry gene was ascertained by ELISA in T2 generation, and the maximum concentration of cry protein in transgenic plants reached approximately 0.82 μg/g FW. Further, Southern blot analysis of ten T2 transgenic plants proved that transgene had been integrated in the genome of all the plants and Northern analysis of the same plants demonstrated the active expression of cry1AcF gene. The highest mean % larval mortalities 80.0 and 85.0 with an average mean % larval mortalities 16.25 (n = 369) and 26.0 (n = 80) were recorded in T1 and T2 generations, respectively. Segregation analysis of the selected lines in the T3 generation demonstrated homozygous nature. This clearly proved that though there is considerable improvement in average mean % larval mortality in T2 generation, the cry1AcF gene was effective against S. litura only to some extent.  相似文献   

11.
Maize (Zea mays), in common with a number of other important crop species, has several glutathione S-transferase (GST) isoforms that have been implicated in the detoxification of xenobiotics via glutathione conjugation. A cDNA encoding the maize GST subunit GST-27, under the control of a strong constitutive promoter, was introduced into explants of the wheat (Triticum aestivum L.) lines cv. Florida and L88-31 via particle bombardment, using the phosphinothricin acetyltransferase (pat) gene as a selectable marker. All six independent transgenic wheat lines recovered expressed the GST-27 gene. T1 progeny of these wheat lines were germinated on solid medium containing the chloroacetanilide herbicide alachlor, and tolerance to this herbicide was correlated with GST-27 expression levels. In glasshouse sprays, homozygous T2 plants were resistant not only to alachlor but also to the chloroacetanilide herbicide dimethenamid and the thiocarbamate herbicide EPTC. These additional GST-27 activities, demonstrated via over-expression in a heterologous host, have not been described previously. T2 plants showed no enhanced tolerance to the herbicides atrazine (an s-triazine) or oxyfluorfen (a diphenyl ether). In further experiments, T2 wheat plants were recovered from immature transgenic scutella cultured on medium containing 100 mg/l alachlor, a concentration which killed null segregant and wild-type scutella. These data indicate the potential of the maize GST-27 gene as a selectable marker in wheat transformation.  相似文献   

12.
Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T0). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T1) produced the highest GUS activity when treated with 150 μM Cu2+ compared to the control (without Cu2+). However, Zn2+ and Fe2+ treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T1 seedlings of tomato when subjected to Cu2+ ions.  相似文献   

13.
The development of rapid and efficient strategies to generate selectable marker-free transgenic plants could help increase the consumer acceptance of genetically modified (GM) plants. To produce marker-free transgenic plants without conditional treatment or the genetic crossing of offspring, we have developed a rapid and convenient DNA excision method mediated by the Cre/loxP recombination system under the control of a −46 minimal CaMV 35S promoter. The results of a transient expression assay showed that −46 minimal promoter::Cre recombinase (−46::Cre) can cause the loxP-specific excision of a selectable marker, thereby connecting the 35S promoter and β-glucuronidase (GUS) reporter gene. Analysis of stable transgenic Arabidopsis plants indicated a positive correlation between loxP-specific DNA excision and GUS expression. PCR and DNA gel-blot analysis further revealed that nine of the 10 tested T1 transgenic lines carried both excised and nonexcised constructs in their genomes. In the subsequent T2 generation plants, over 30% of the individuals for each line were marker-free plants harboring the excised construct only. These results demonstrate that the −46::Cre fusion construct can be efficiently and easily utilized for producing marker-free transgenic plants.  相似文献   

14.
A novel DREB (dehydration responsive element binding protein) gene, designated BjDREB1B, was isolated from Brassica juncea L. BjDREB1B contains a conserved EREBP/AP2 domain and was classified into the A-1 subgroup of the DREB subfamily based on phylogenetic tree analysis. RT-PCR showed that BjDREB1B was induced by abiotic stresses and exogenous phytohormones, such as drought, salt, low temperature, heavy metals, abscisic acid, and salicylic acid. Gel shift assay revealed that BjDREB1B specifically bound to the DRE element in vitro. Yeast one-hybrid assay showed that full-length BjDREB1B or its C-terminal region functioned effectively as a trans-activator. Furthermore, overexpression of BjDREB1B in tobacco up-regulated the expression of NtERD10B, and BjDREB1B transgenic plants accumulated higher levels of proline than control plants under normal and saline conditions, together showing that BjDREB1B plays important roles in improving plant tolerance to drought and salinity.  相似文献   

15.
16.
Late embryogenesis abundant (LEA) proteins have been implicated in many stress responses of plants. In this report, a LEA protein gene OsLEA3-1 was identified and over-expressed in rice to test the drought resistance of transgenic lines under the field conditions. OsLEA3-1 is induced by drought, salt and abscisic acid (ABA), but not by cold stress. The promoter of OsLEA3-1 isolated from the upland rice IRAT109 exhibits strong activity under drought- and salt-stress conditions. Three expression constructs consisting of the full-length cDNA driven by the drought-inducible promoter of OsLEA3-1 (OsLEA3-H), the CaMV 35S promoter (OsLEA3-S), and the rice Actin1 promoter (OsLEA3-A) were transformed into the drought-sensitive japonica rice Zhonghua 11. Drought resistance pre-screening of T1 families at anthesis stage revealed that the over-expressing families with OsLEA3-S and OsLEA3-H constructs had significantly higher relative yield (yield under drought stress treatment/yield under normal growth conditions) than the wild type under drought stress conditions, although a yield penalty existed in T1 families under normal growth conditions. Nine homozygous families, exhibiting over-expression of a single-copy of the transgene and relatively low yield penalty in the T1 generation, were tested in the field for drought resistance in the T2 and T3 generations and in the PVC pipes for drought tolerance in the T2 generation. Except for two families (transformed with OsLEA3-A), all the other families (transformed with OsLEA3-S and OsLEA3-H constructs) had higher grain yield than the wild type under drought stress in both the field and the PVC pipes conditions. No significant yield penalty was detected for these T2 and T3 families. These results indicate that transgenic rice with significantly enhanced drought resistance and without yield penalty can be generated by over-expressing OsLEA3-1 gene with appropriate promoters and following a bipartite (stress and non-stress) in-field screening protocol.  相似文献   

17.
18.
Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat (Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T1 plants. Resistance to stripe rust in transgenic T2 and T3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27–36 %) was recorded for transgenic T2 and T3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat.  相似文献   

19.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号