首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FANCL是一个范可尼氏贫血新蛋白,它作为泛素E3连接酶催化FANCD2的单一泛素化,在修复DNA损伤、维持染色体稳定的FA途径中起着关键作用。胚胎期FANCL与小鼠原始生殖细胞增殖密切相关,成年睾丸中FANCL与几个生殖细胞特异性蛋白形成一个睾丸特异网络,可能参与影响精子的生成。采用RT-PCR方法从小鼠总RNA中扩增克隆FancL全长cDNA片段,构建表达质粒,在大肠杆菌中表达了6His-FANCL蛋白,用表达蛋白作为抗原免疫新西兰白兔制备了抗FANCL多抗血清。采用镍离子金属螯合柱纯化6His-FANCL蛋白后,通过与活性基团-NHS交联制备了FANCL抗原柱,亲和纯化了FANCL多抗。为了验证抗体活性和特异性,在HEK293T细胞中瞬时表达了HA-FANCL融合蛋白,分别用HA单抗和纯化多抗进行Western印迹分析,结果表明获得了特异性的FANCL抗体。为了观察FANCL在组织中的表达谱,制备了多种小鼠组织匀浆蛋白,使用纯化的FANCL多抗进行Western印迹分析,在脑、心、肺、肝、脾、肾、睾丸、卵巢、子宫和肌肉组织中都检测到FANCL蛋白的表达,说明FANCL在小鼠组织中是广泛表达的,这与其是DNA修复复合物中的重要成员相一致。  相似文献   

2.
体外实验研究表明配子生成素结合蛋白1(GGNBP1)可能与GGN1相互作用形成睾丸特异性复合物,在精子生成过程中发挥作用.从小鼠睾丸总RNA中反转录扩增Ggnbpl全长cDNA,构建表达质粒,在大肠杆菌中表达GGNBP1,经聚丙烯酰胺凝胶纯化后免疫新西兰白兔,制备兔多抗血清.镍离子金属螯合柱纯化表达的GGNBP1蛋白,与NHS活化基团交联,制备GGNBP1抗体亲和层析柱,纯化GGNBP1多抗.在293FT细胞中瞬时表达Myc-GGNBP1融合蛋白,用于Mvc单抗验证GGNBP1抗体特异性,结果证明获得了特异性的GGNBP1抗体.分别制备小鼠脑、心、肺、肝、脾、肾、肌肉、卵巢、睾丸和子宫组织匀浆,用GGNBP1抗体进行Western印迹分析,结果仅在睾丸组织匀浆中检测到GGNBP1特异性条带,证明GGNBP1是睾丸特异性表达蛋白.  相似文献   

3.
FANCL在原始生殖细胞的形成和范可尼贫血中的功能研究   总被引:1,自引:0,他引:1  
赵庆国  卢柏松  黄培堂 《遗传学报》2005,32(9):993-1000
Fanconi氏贫血是一种罕见的常染色体隐性遗传性疾病,表现为进行性骨髓衰竭、先天性骨骼畸形和易患癌症等。Fanconi aremia(FA)病人细胞染色体自发不稳定,并对DNA交联剂如丝裂霉素C高度敏感。目前已发现11种FA蛋白参与形成了一种DNA损伤应答途径。新蛋白FANCL是FA复合物蛋白,作为E3连接酶催化FANCD2单一泛素化,泛素化FANCD2导向染色质与BRCA2相互作用,修复DNA损伤。FANCL、FANCC和FANCA等FA蛋白缺失造成生殖细胞缺失性不育,胚胎期生殖细胞中FA途径可能调控原始生殖细胞的增殖。FANCL和睾丸特异性蛋白质GGNBP1、GGNBP2以及OAZ3都与睾丸特异性蛋白质GGN1相互作用,形成睾丸特异性复合物,有可能在成年睾丸中影响精子生成。  相似文献   

4.
生殖细胞缺陷症(gcd)小鼠突变体是上世纪90年代初发现的一种不育突变小鼠,FancL(也叫Pog)的缺失是产生god突变小鼠的原因。FANCL是一种含有PHD结构域的泛素E3连接酶,是Fanconi贫血复合物中的组分之一。在生殖细胞中,FANCL与GGN1和GGN3相互作用,而GGN1和GGN3蛋白的功能还不清楚。为了研究GGN3的功能,揭示更多的参与该过程的蛋白质,运用Clontech公司新开发的第三套酵母双杂交系统以GGN3为诱饵从成年小鼠睾丸cDNA库中筛选与其相互作用的蛋白分子。发现了一个精子生成期间在睾丸中特异性高表达的基因Ggnbp2,免疫共沉淀分析表明,Ggnbp2编码的蛋白质产物GGNBP2在哺乳动物细胞中与GGN3特异相互作用。通过构建突变体,确定了GGNBP2蛋白与GGN3相互作用的区域。以上结果为揭示GGN3和GGNBP2在生殖发育中的功能、丰富生殖细胞发育的蛋白调控网络及其调控规律奠定了一定的基础。  相似文献   

5.
Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we provide evidence that FANCL, the E3 ubiquitin ligase of the Fanconi anemia pathway, is constitutively targeted for degradation by the proteasome. We confirm biochemically that FANCL is polyubiquitinated with Lys-48–linked chains. Evaluation of a series of N-terminal–deletion mutants showed that FANCL''s E2-like fold may direct ubiquitination. In addition, our studies showed that FANCL is stabilized in a complex with axin1 when glycogen synthase kinase-3β is overexpressed. This result leads us to investigate the potential regulation of FANCL by upstream signaling pathways known to regulate glycogen synthase kinase-3β. We report that constitutively active, myristoylated-Akt increases FANCL protein level by reducing polyubiquitination of FANCL. Two-dimensional PAGE analysis shows that acidic forms of FANCL, some of which are phospho-FANCL, are not subject to polyubiquitination. These results indicate that a signal transduction pathway involved in self-renewal and survival of hematopoietic stem cells also functions to stabilize FANCL and suggests that FANCL participates directly in support of stem cell function.  相似文献   

6.
7.
The integrity of male germ cell genome is critical for the correct progression of spermatogenesis, successful fertilization, and proper development of the offspring. Several DNA repair pathways exist in male germ cells. However, unlike somatic cells, key components of such pathways remain largely unidentified. Gametogenetin (GGN) is a testis-enriched protein that has been shown to bind to the DNA repair protein FANCL via yeast-two-hybrid assays. This finding and its testis-enriched expression pattern raise the possibility that GGN plays a role in DNA repair during spermatogenesis. Herein we demonstrated that the largest isoform GGN1 interacted with components of DNA repair machinery in the mouse testis. In addition to FANCL, GGN1 interacted with the critical component of the Fanconi Anemia (FA) pathway FANCD2 and a downstream component of the BRCA pathway, BRCC36. To define the physiological function of GGN, we generated a Ggn null mouse line. A complete loss of GGN resulted in embryonic lethality at the very earliest period of pre-implantation development, with no viable blastocysts observed. This finding was consistent with the observation that Ggn mRNA was also expressed in lower levels in the oocyte and pre-implantation embryos. Moreover, pachytene spermatocytes of the Ggn heterozygous knockout mice showed an increased incidence of unrepaired DNA double strand breaks (DSBs). Together, our results suggest that GGN plays a role in male meiotic DSB repair and is absolutely required for the survival of pre-implantation embryos.  相似文献   

8.
Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. The FA proteins have functions in genome maintenance and in the cytoplasmic process of selective autophagy, beyond their canonical roles of repairing DNA interstrand cross-links. FA core complex proteins FANCC, FANCF, FANCL, FANCA, FANCD2, BRCA1 and BRCA2, which previously had no known direct functions outside the nucleus, have recently been implicated in mitophagy. Although mutations in FANCL account for only a very small number of cases in FA families, it plays a key role in the FA pathophysiology and might drive carcinogenesis. Here, we demonstrate that FANCL protein is present in mitochondria in the control and Oligomycin and Antimycin (OA)-treated cells and its ubiquitin ligase activity is not required for its localization to mitochondria. CRISPR/Cas9-mediated knockout of FANCL in HeLa cells overexpressing parkin results in increased sensitivity to mitochondrial stress and defective clearing of damaged mitochondria upon OA treatment. This defect was reversed by the reintroduction of either wild-type FANCL or FANCL(C307A), a mutant lacking ubiquitin ligase activity. To summarize, FANCL protects from mitochondrial stress and supports Parkin-mediated mitophagy in a ubiquitin ligase-independent manner.  相似文献   

9.
Fanconi anemia (FA) is an autosomal recessive disorder characterized by aplastic anemia, cancer susceptibility, and cellular sensitivity to mitomycin C. Eight of the 11 cloned Fanconi anemia gene products (FANCA, -B, -C, -E, -F, -G, -L, and -M) form a multisubunit nuclear complex (FA core complex) required for monoubiquitination of a downstream FA protein, FANCD2. FANCL, which possesses three WD40 repeats and a plant homeodomain (PHD), is the putative E3 ubiquitin ligase subunit of the FA complex. Here, we demonstrate that the WD40 repeats of FANCL are required for interaction with other subunits of the FA complex. The PHD is dispensable for this interaction, although it is required for FANCD2 mono-ubiquitination. The PHD of FANCL also shares sequence similarity to the canonical RING finger of c-CBL, including a conserved tryptophan required for E2 binding by c-CBL. Mutation of this tryptophan in the FANCL PHD significantly impairs in vivo mono-ubiquitination of FANCD2 and in vitro auto-ubiquitination activity, and partially impairs restoration of mitomycin C resistance. We propose a model in which FANCL, via its WD40 region, binds the FA complex and, via its PHD, recruits an as-yet-unidentified E2 for mono-ubiquitination of FANCD2.  相似文献   

10.
Zhang Y  Zhou X  Zhao L  Li C  Zhu H  Xu L  Shan L  Liao X  Guo Z  Huang P 《Molecules and cells》2011,31(2):113-122
Fanconi anemia (FA) is a rare cancer-predisposing genetic disease mostly caused by improper regulation of the monoubiquitination of Fanconi anemia complementation group D2 (FANCD2). Genetic studies have indicated that ubiquitin conjugating enzyme UBE2T and HHR6 could regulate FANCD2 monoubiquitination through distinct mechanisms. However, the exact regulation mechanisms of FANCD2 monoubiquitination in response to different DNA damages remain unclear. Here we report that UBE2W, a new ubiquitin conjugating enzyme, could regulate FANCD2 monoubiquitination by mechanisms different from UBE2T or HHR6. Indeed, UBE2W exhibits ubiquitin conjugating enzyme activity and catalyzes the monoubiquitination of PHD domain of Fanconi anemia complementation group L (FANCL) in vitro. UBE2W binds to FANCL, and the PHD domain is both necessary and sufficient for this interaction in mammalian cells. In addition, over-expression of UBE2W in cells promotes the monoubiquitination of FANCD2 and down-regulated UBE2W markedly reduces the UV irradiation-induced but not MMC-induced FANCD2 monoubiquitination. These results indicate that UBE2W regulates FANCD2 monoubiquitination by mechanisms different from UBE2T and HRR6. It may provide an additional regulatory step in the activation of the FA pathway.  相似文献   

11.
生殖细胞缺陷症(gcd)小鼠突变体是20个世纪90年代初发现的一种不育突变小鼠,其不育原因是由于其胚胎期原始生殖细胞的数目低于正常。FancL(也叫Pog)的缺失是引起gcd突变小鼠的原因,FancL基因缺失后可能影响了小鼠胚胎期原始生殖细胞的增殖/存活和成年期小鼠精母细胞的减数分裂。FANCL是一种含有PHD结构域的泛素E3连接酶,是Fanconi贫血复合物的组分之一。在生殖细胞中,FANCL与GGN1和GGN3相互作用,GGN1和GGN2又与一种新的蛋白质GGNBP特异作用。但GGNBP蛋白的功能还不清楚。为了研究GGNBP的功能以及揭示更多的参与该过程的蛋白质,运用Clontech公司新开发的第3套酵母双杂交系统,以GGNBP为诱饵从成年小鼠睾丸cDNA库中筛选与其相互作用的蛋白质基因,发现了一个主要在睾丸中表达的新的基因,其编码的蛋白质产物在酵母系统中与GGNBP特异作用。  相似文献   

12.
13.
Marek LR  Bale AE 《DNA Repair》2006,5(11):1317-1326
Fanconi anemia (FA) is a genetically heterogeneous disease characterized by developmental defects, progressive bone marrow failure and cancer susceptibility. Cells derived from patients with FA show spontaneous chromosomal aberrations and hypersensitivity to cross-linking agents, indicating a cellular defect in DNA repair. Among the 12 FA genes, only FANCD2, FANCL and FANCM have Drosophila homologs. Given this difference between the human and Drosophila FA pathways, it is unknown whether the fly homologs function in DNA repair. Here, we report that knockdown of Drosophila FANCD2 or FANCL leads to specific hypersensitivity to cross-linking agents. Further analysis revealed that FANCD2 and FANCL function in a linear pathway with FANCL being necessary for the monoubiquitination of FANCD2. FANCD2 mutants also exhibited the same defect in the ionizing radiation-inducible S-phase checkpoint that is seen in mammalian cells deficient for this gene. Finally, in an assay for inactivating mutations, FANCD2 mutants have an elevated mutation rate in response to nitrogen mustard, indicating that these flies are hypermutable. Taken together, these data demonstrate that Drosophila FANCD2 and FANCL play a critical role in DNA repair. Because of the lack of other FA genes, further studies will determine whether the conserved FA genes function as the minimal machinery or whether additional genes are involved in the Drosophila FA pathway.  相似文献   

14.
The Fanconi anemia pathway is required for the efficient repair of damaged DNA. A key step in this pathway is the monoubiquitination of the FANCD2 protein by the ubiquitin ligase (E3) composed of Fanconi anemia core complex proteins. Here, we show that UBE2T is the ubiquitin-conjugating enzyme (E2) essential for this pathway. UBE2T binds to FANCL, the ubiquitin ligase subunit of the Fanconi anemia core complex, and is required for the monoubiquitination of FANCD2 in vivo. DNA damage in UBE2T-depleted cells leads to the formation of abnormal chromosomes that are a hallmark of Fanconi anemia. In addition, we show that UBE2T undergoes automonoubiquitination in vivo. This monoubiquitination is stimulated by the presence of the FANCL protein and inactivates UBE2T. Therefore, UBE2T is the E2 in the Fanconi anemia pathway and has a self-inactivation mechanism that could be important for negative regulation of the Fanconi anemia pathway.  相似文献   

15.
The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo.  相似文献   

16.
17.
The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand cross-links. At the heart of this pathway is the monoubiquitination of the FANCI-FANCD2 (ID) complex by the multiprotein "core complex" containing the E3 ubiquitin ligase FANCL. Vertebrate organisms have the eight-protein core complex, whereas invertebrates apparently do not. We report here the structure of the central domain of human FANCL in comparison with the recently solved Drosophila melanogaster FANCL. Our data represent the first structural detail into the catalytic core of the human system and reveal that the central fold of FANCL is conserved between species. However, there are macromolecular differences between the FANCL proteins that may account for the apparent distinctions in core complex requirements between the vertebrate and invertebrate FA pathways. In addition, we characterize the binding of human FANCL with its partners, Ube2t, FANCD2, and FANCI. Mutational analysis reveals which residues are required for substrate binding, and we also show the domain required for E2 binding.  相似文献   

18.
Monoubiquitination of FANCD2 is a key step in the DNA damage response pathway involving Fanconi anemia proteins and the breast cancer susceptibility gene products, BRCA1 and BRCA2. One critical unresolved issue is the identity of the ubiquitin ligase responsible for this reaction. Two proteins, BRCA1 and FANCL(PHF9), have been suggested to be this ligase. Here we found that FANCL, but not BRCA1, evolutionarily co-exists with FANCD2 in several species. Moreover, the proportion of FANCD2 in chromatin and nuclear matrix is drastically reduced in a cell line mutated in FANCL, but not in that mutated in BRCA1. This defective distribution of FANCD2 in the FANCL-mutant cell line is likely due to its defective monoubiquitination, because the monoubiquitinated FANCD2 preferentially associates with chromatin and nuclear matrix, whereas non-ubiquitinated FANCD2 largely resides in the soluble fraction. Our data support the notion that FANCL, but not BRCA1, is the likely ligase for FANCD2 monoubiquitination.  相似文献   

19.
20.
The function of protease during male meiosis has not been well studied. We previously cloned and characterized four testis-specific serine proteases in the mouse testis. One of the proteases, Prss41/Tessp-1, was expressed in the germ and Sertoli cell. This time, to examine the involvement of Prss41/Tessp-1 in spermatogenesis, we conducted the organ culture of testis fragments in the presence of the anti-Prss41/Tessp-1 antibody. Because in the Sertoli cell, the Prss41/Tessp-1 protein was mostly associated with the membrane of intracellular organelles by glycosylphosphatidylinositol, the antibody was expected to affect Prss41/Tessp-1 at the plasma membrane of spermatogonia. By adding the antibody, the number of germ cells was decreased in some seminiferous tubules. The marker genes expression strongly suggested that meiosis was arrested at spermatogonia, and the number of apoptotic germ cells increased by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. These data indicated that Prss41/Tessp-1 was necessary for the progression of meiosis at the stage of spermatogonia during in vitro spermatogenesis. Together with our previous study, the current results suggest that the Prss/Tessp proteases are important for the progression of meiosis at each stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号