首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A recently developed polyacrylamide gel electrophoresis technique for tuber proteins is used to help elucidate the evolution and taxonomy of some cultivated potatoes. The results substantiate the theory that Group Tuberosum evolved from Group Andigena, that Group Andigena evolved from a cultivated diploid × wild diploid hybrid, and that Group Phureja evolved from Group Stenotomum. Furthermore, the results suggest these groups are closely enough related to merit classification within a single species.Scientific Journal Series Article 10,172 of the Minnesota Agricultural Experiment Station  相似文献   

2.
C. P. Carroll 《Genetica》1975,45(2):149-162
When dihaploids of EuropeanSolanum tuberosum are used as female parents in crosses with South American cultivated diploid potatoes (Group Phureja/Stenotomum), various kinds and degrees of male sterility are found in the offspring. The effect of using different dihaploid and cultivated diploid parents on shrivelled microspore sterility of F1 hybrid progenies was studied. Variation in the character was continuous and statistical analyses showed high general combining ability for dihaploid parents but not for cultivated diploids. A significant but non-linear relationship was found between percent of stainable pollen and seed set in crosses with female tester parents, provided that some degree of functional male fertility was present. F1 clones with pollen of normal appearance but with no functional fertility probably represent a hitherto unclassified cytoplasmic male sterility. The results are discussed from the point of view of methods to be adopted in improving potatoes at the diploid level.  相似文献   

3.
Gene frequencies at 13 isozyme loci were determined in three South American taxa of cultivated potatoes [the diploid group (gp.) Stenotomum, the diploid subgroups (subgp.) Goniocalyx, and the tetraploid gp. Andigena ofS. tuberosum], in the diploid weed speciesS. sparsipilum, and in most of the main cultivars now raised in the Northern Hemisphere (the tetraploid gp. Tuberosum ofS. tuberosum). High levels of genetic variability (mean number of alleles per locus, percentage of polymorphic loci, and mean heterozygosity) were detected, being higher in tetraploid potatoes. An equilibrium among the evolutionary factors which increase genetic variability and artificial selection for maximum yield would explain the high uniformity of heterozygosity values we observed in both Andigena (0.36 ± 0.02) and Tuberosum (0.38 ± 0.01) cultivars.—The low value of genetic distance (D = 0.044) between Stenotomum and Goniocalyx does not support the status of species forS. goniocalyx.—In most isozyme loci, the electromorphs of gp. Andigena were a combination of those found in both gp. Stenotomum andS. sparsipilum, suggesting an amphidiploid origin of gp. Andigena from that two diploid taxa. The presence in Andigena of unique electromorphs, which were lacking in both gp. Stenotomum andS. sparsipilum, suggests that other diploid species could be also implied in the origin of tetraploid Andean potatoes. Furthermore, since Andigena were more related to Stenotomum (D = 0.052) than toS. sparsipilum (D = 0.241), the autopolyploidization of Stenotomum individuals and the subsequent hybridization with gp. Andigena may also have occurred. Thus, our study suggests a multiple origin (amphidiploidy, autoploidy, and hybridization at tetraploid level) of gp. Andigena.—Most of the electromorphs of gp. Tuberosum were also found in gp. Andigena; both the direct derivation of that group from the Andean tetraploid potatoes and the repeated introgression provided by breeding programmes could explain this result. However, the allele c of Pgm-B, present in 30 out of 76 Tuberosum cultivars from Northern Hemisphere as well as in 3 Chilean Tuberosum cultivars, lacks in the 258 Andigena genotypes sampled, suggesting that Chilean germplasm could have taken part in the origin of at least the 39% of the potato cultivars from Europe and North America analyzed here.—The distanceWagner procedure provides an estimate of a 30% of heterogeneity in the evolutionary divergence shown by different groups of cultivated potatoes. Diploid groups show a higher (22.5%) evolutionary rate than tetraploids, which can be attributed to both tetrasomic inheritance and facultative autofecundation that exists in Andigena and Tuberosum groups. Thus, artificial selection acting since 10000 years has not resulted in a higher rate of molecular evolution at the isozyme level in the tetraploids.  相似文献   

4.
Summary A high gene frequency for ps (parallel spindles) is expected in cultivated tetraploid potatoes, S. tuberosum Group Tuberosum, if 2n pollen produced by ancestral diploid plants which were psps was involved in the origin and evolution of the potato. Fifty-six North American cultivars (varieties and advanced selections) were pollinated by diploid clones, either W 5295.7 or W 5337.3 which are homozygous recessive for ps. The segregation ratios in regard to 2n pollen production in derived tetraploid progenies, from 4x×2x crosses, reveal the genotype of ps in the cultivars. Microsporogenesis of 2n pollen producing 4x progeny was observed to avoid an overestimation of the frequency of 2n pollen producing plants due to mechanisms other than parallel spindles. More than 50% of the 56 cultivars are simplex (Pspspsps), since in each of these cultivars about 50% of their progeny produced 2n pollen. The ps gene frequency in the 56 cultivars was estimated as high as 0.69. The high frequency of ps in the tetraploid cultivars clearly supports the hypothesis that 2n pollen produced by plants homozygous recessive for ps have been involved in the origin of cultivated tetraploid potatoes, since a higher frequency of ps in the tetraploid than in the ancestral diploid population can be expected from sexual polyploidization but not from somatic doubling. The importance of meiotic mutants such as ps for the successful evolution of polysomic polyploids is emphasized.  相似文献   

5.
Summary A modified polyacrylamide gel electrophoresis technique is employed to resolve proteins for use as biochemical gene markers in potato. Dominant, duplicate dominant and complementary gene action are three modes of inheritance that adequately explain the segregation of three respective protein bands in two generations of crossing within diploid Phureja X haploid Tuberosum families.Scientific Journal Seires Article 10,171 of the Minnesota Agricultural Experiment Station  相似文献   

6.
Based on the presence of three types of eggs with different diameters 0.13, 0.17 and 0.2 cm, we made two crosses: F2 (♀) × diploid red crucian carp (♂), and F2 (♀) × F10 tetraploid (♂). The ploidy levels of the progeny of the two crosses were examined by chromosome counting and DNA content measurement by flow cytometer. In the offspring of the former cross, tetraploids, trip-loids, and diploid were obtained. In the progeny of the latter cross, tetraploids and triploids were observed. The production of the different ploidy level fish in the progeny of the two crosses provided a further evidence that F2 might generate triploid, diploid and haploid eggs. The presence of the male tetraploid found in F2 (♀) × diploid red crucian carp (♂) suggested that the genotype of XXXY probably existed in the tetraploid progeny. The gonadal structures of the tetraploids and triploids indicated that both female and male tetraploids were fertile and the triploids were sterile. We concluded that the formations of different ploidy level eggs from F2 were contributed by endoreduplication and fusion of germ cells.  相似文献   

7.
Summary Theoretical models to estimate the coefficient of double reduction in tetraploid organisms and the standard error of this estimate are derived. Using these models, we were able to estimate the coefficient of double reduction for several loci in tetraploid potatoes, Solanum tuberosum L., through examination of segregating isozyme loci in a series of 4x-2x crosses and in haploid progeny derived from six cultivated tetraploid potatoes. Tetraploid x diploid crosses are useful for estimating the frequency of double reduction because of the availability of homozygous diploid tester lines and the large number of tetraploid progeny generated via the functioning of 2n pollen. The strength of haploid analysis is the examination of diploid progeny. However, it is frequently difficult to obtain large numbers of progeny for testing. Based on our results, we conclude that double reduction occurs sporadically in tetraploid potatoes.  相似文献   

8.
Summary A triploid hybrid (2n=3x=36) between a colchicine-induced 4x(2EBN) Solanum brevidens (a non-tuber-bearing species) and 2x(2EBN) S. chacoense (a tuber-bearing species) was used as a vehicle for germplasm transfer to S. tuberosum Group Tuberosum. The use of 2n gametes from the triploid allowed the unique opportunity for transferring exotic germplasm from Series Etuberosa to Gp. Tuberosum material. The triploid hybrid used had a pollen stainability of less than 0.1%. Observations of microsporogenesis revealed that metaphase I pairing configurations were primarily 12 bivalents and 12 univalents with occasional trivalents. Anaphase I separations were irregular, often with lagging univalents. Meiotic observations and pollen morphology suggest that the stainable pollen produced by the hybrid was 2n=3x=36. A single pentaploid hybrid (2n=5x=60) was produced by the fertilization of a rare 2n egg from the triploid with a normal male gamete from the clone Wis AG 231 (2n=4x=48). Limited crosses to other 1, 2 and 4EBN species and cultivars were unsuccessful. The pentaploid hybrid had a more regular meiosis than the triploid and dramatically improved pollen stainability (37% stainable pollen). Stylar blocks prevented estimates of male fertility in crosses. Female fertility in 47 crosses with nine cultivars averaged 19 seeds per fruit. Although S. brevidens is non-tuber-bearing, and the triploid produced only stolons, the pentaploid hybrid tuberized well under field conditions, despite being very late. Results suggest that the tuberization response is a dosage and/or threshold effect. This approach to the incorporation of 1EBN germplasm indicates the utility of the EBN concept coupled with 2n gametes. Further, it demonstrates a means for the introgression of 1EBN species genes into Gp. Tuberosum material.  相似文献   

9.
Somatic hybrids between a potato virus Y (PVY) resistant Solanum etuberosum clone and a susceptible diploid potato clone derived from a cross between S. tuberosum Gp. Tuberosum haploid US-W 730 and S. berthaultii were evaluated for resistance to PVY. All but one of the tested somatic hybrids were significantly more resistant than cultivars Atlantic and Katahdin. However, none was as resistant as the S. etuberosum parent. One hexaploid somatic hybrid, possibly the product of a triple-cell fusion involving one S. etuberosum protoplast and two haploid x S. berthaultii protoplasts, was as susceptible to PVY infection as the cultivars. Tetraploid progeny of the somatic hybrids, obtained from crosses with Gp. Tuberosum cultivars, were neither as resistant as the maternal somatic hybrid parent, nor as susceptible as the paternal cultivar parent. It appears that the introgression of PVY resistance from (1EBN) S. etuberosum into (4EBN) S. tuberosum (EBN-endosperm balance number) will be successful through the use of somatic hybridization and subsequent crosses of the somatic hybrids back to S. tuberosum.  相似文献   

10.
Twelve 4x families (obtained from a sub‐set of crosses between seven 4x‐potato cultivars and three 2x haploid Tuberosum‐Solanum chacoense hybrids) were evaluated at Hancock, Wisconsin (USA). The 4x‐parents were elite cultivars selected for adaptation in three continents (Europe, South America, and North America). The 2x male clones were able to produce 2n‐pollen grains by a mechanism akin to first‐division restitution with crossover (FDR‐CO). The estimation of the degree of heterosis for total tuber yield (TTY) was obtained by comparing the field performance of the progenies with their respective 2x and 4x parents. Haulm maturity (HM) and general tuber appearance (GTA) were also evaluated. For TTY, the 4x‐2x families (as a group) outyielded both the 4x and 2x parental groups by 10.6% and 42.5%, respectively. In addition, 5 out of 12 families outyielded their corresponding 4x‐parents. These best five families outyielded the group of 4x‐parents by 40.6%. A considerable variability was observed for HM but, in general, the families were later maturing than the 4x cultivars. The identification of 4x‐2x families with GTA within the range of the 4x commercial cultivars was another important observation. An overall lack of parent‐offspring correlation was detected indicating that performance of the parents per se cannot provide a reliable prediction about the performance of the families. Therefore, progeny testing would be an imperative step for selection of parental clones at both ploidy levels. Our study indicated that haploid Tuberosum‐S. chacoense hybrids are able to generate heterotic 4x‐2x families for TTY in combination with good GTA. These results reinforce the view that selection of superior clones for the Northern Hemisphere can be feasible using germplasm with ~25% genomic contribution of this wild South American species.  相似文献   

11.
Electrofusion was used to obtain somatic hybrids between Solanum etuberosum (2n=2x=24) and two diploid potato lines. These hybridizations were conducted to determine if haploidxwild species hybrids are better fusion partners than conventional S. tuberosumGp. Tuberosum haploids. Restriction fragment length polymerase (RFLP) analyses of the putative somatic hybrids confirmed that each parental genome was present. The somatic hybrids between S. etuberosum and a haploid S. tuberosum clone, US-W730, were stunted and had curled, purple leaves. In contrast, somatic hybrids between S. etuberosum and a haploidxwild species hybrid (US-W 730 haploidx S. berthaultii), were vigorous and generally tuberized under field conditions. These hybrids were designated as E+BT somatic hybrids. Analyses of 23 E+BT somatic hybrids revealed a statistically significant bias towards the retention of S. etuberosum chloroplasts. Stylar incompatibilities were observed when the E+BT somatic hybrids were used as pollen donors in crosses with S. tuberosum cultivars. Reciprocal crosses did not show this incompatibility. The progeny were vigorous and had improved tuber traits when compared to the maternal E+BT parent. RFLP analyses of three sexual progeny lines confirmed the presence of all 12 S. etuberosum chromosomes. In two of these lines, RFLPs that marked each of the 24 chromosome arms of S. etuberosum were present. However, RFLP markers specific for regions on chromosomes 2, 7, and 11 were missing from the third clone. Because other markers for these chromosomes were present in the progeny line, these results indicated the likelihood of pairing and recombination between S. etuberosum and S. tuberosum chromosomes.  相似文献   

12.
Reproductive capacity was investigated in naturally occurring triploid individuals of the loach Misgurnus anguillicaudatus collected from Memanbetsu Town, Abashiri County, Hokkaido Island, Japan. These triploids have been considered to appear by accidental incorporation of the haploid sperm genome from normal diploid into unreduced diploid eggs from the clonal lineage that usually reproduces unisexually. By fertilization with sperm from the normal male, one triploid female gave many inviable aneuploid (2.1–2.7n) and very few tetraploid progeny, whereas the other produced both diploid and triploid progeny. The results suggest that at least four different types of eggs can be formed in triploid females in this locality. In contrast, no progeny hatched when eggs of the normal female were fertilized with sperm or sperm-like cells obtained from triploid males. These gametes exhibited inactive or no motility after adding ambient water. They had larger head sizes than those of normal haploid sperm and had a short or no tail. Although their ploidy was triploid or hexaploid, a small number of haploid cells were detected in the semen by flow cytometry. Thus, triploid males were generally sterile, but they have a little potential for producing very few haploid sperm.  相似文献   

13.
Summary Two sets of somatic hybrids between Solanum brevidens (2x) and S. tuberosum (2x and 4x) were evaluated for male fertility, meiotic regularity and female fertility. The somatic hybrids were tetraploids from 2x + 2x fusions and hexaploids from 2x + 4x fusions. Pollen stainability ranged from 0 to 83% in tetraploids and from 0 to 23% in hexaploids. The tetraploids had more regular meiosis, lower levels of micropollen and fewer unassociated chromosomes than hexaploids. However, except for a low level of selfing, the pollen of both sets of hybrids was ineffective in pollinations. The tetraploids, as females, crossed poorly with 2x and 4x tester species and selfed only at low levels. The hexaploid fusion hybrids also crossed poorly with the 2x tester species and selfed only to a limited degree; however, they crossed well with 4x testers. Seed set in crosses with S. tuberosum Group Andigena, and S. tuberosum Group Tuberosum cultivars Kathadin and Norland averaged 16.7, 15.6 and 28.6 seeds per fruit, respectively. Progeny from these crosses had 5x or nearly 5x ploidy levels. The results indicate that reasonable levels of female fertility can be obtained in somatic fusion hybrids of S. brevidens and S. tuberosum.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

14.
Cultivated potatoes have been classified as species under the International Code of Botanical Nomenclature (ICBN) and as cultivar-groups under the International Code of Nomenclature of Cultivated Plants (ICNCP); both classifications are still widely used. This study examines morphological support for the classification of landrace populations of cultivated potatoes, using representatives of all seven species and most subspecies as outlined in the latest taxonomic treatment. These taxa are S. ajanhuiri, S. chaucha, S. curtilobum, S. juzepczukii, S. phureja subsp. phureja, S. stenotomum subsp. stenotomum, S. stenotomum subsp. goniocalyx, S. tuberosum subsp. andigenum, and S. tuberosum subsp. tuberosum. The results show some phenetic support for S. ajanhuiri, S. chaucha, S. curtilobum, S. juzepczukii, and S. tuberosum subsp. tuberosum, but little support for the other taxa. Most morphological support is by using a suite of characters, all of which are shared with other taxa (polythetic support). These results, combined with their likely hybrid origins, multiple origins, evolutionary dynamics of continuing hybridization, and our classification philosophy, leads us to recognize all landrace populations of cultivated potatoes as a single species, S. tuberosum, with the eight cultivar-groups: Ajanhuiri Group, Andigenum Group, Chaucha Group, Chilotanum Group, Curtilobum Group, Juzepczukii Group, Phureja Group, and Stenotomum Group. We defer classification of modern cultivars, traditionally classified in Tuberosum Group, to a later study.  相似文献   

15.
Summary More than 28,000 pollinations were carried out between 5 Ipomoea batatas and 41 diploid I. trifida accessions of diverse origins to obtain 4x interspecific hybrids. From the resultant 730 seeds, 248 plants were finally obtained. Ploidy level determination of the progeny showed unexpected results: 52 individuals were hexaploid, 5 were pentaploid, 190 were tetraploid, as expected, and one was not determined. The existence of 5x and 6x progenies from 6x x 2x crosses not only confirmed the presence of 2n gametes but also their successful function in gene flow between ploidy levels and polyploidization within this genus. The progeny and their cultivated parents were planted in an observation field. The cultivated parents produced 0.49 kg/plant or less. Most 4x progenies did not produce storage roots or had very poor yields; nonetheless, and despite their cultivated parents' poor yields, 8 genotypes yielded between 0.81 and 1.50 kg/plant.A new scheme, using the 4x interspecific hybrids, is proposed for evaluating 2x and 4x wild accessions of the section Batatas to which the sweet potato belongs. Other possible uses of the 4x hybrids in breeding and genetics of the sweet potato are also discussed.  相似文献   

16.
A recent approach to detecting genetic polymorphism involves the amplification of genomic DNA using single primers of arbitrary sequence. When separated electrophoretically in agarose gels, the amplification products give banding patterns that can be scored for genetic variation. The objective of this research was to apply these techniques to cultivated peanut (Arachis hypogaea L.) and related wild species to determine whether such an approach would be feasible for the construction of a genetic linkage map in peanut or for systematic studies of the genus. Two peanut cultivars, 25 unadapted germplasm lines of A. hypogaea, the wild allotetraploid progenitor of cultivated peanut (A. monticola), A. glabrata (a tetraploid species from section Rhizomatosae), and 29 diploid wild species of Arachis were evaluated for variability using primers of arbitrary sequence to amplify segments of genomic DNA. No variation in banding pattern was observed among the cultivars and germplasm lines of A. hypogaea, whereas the wild Arachis species were uniquely identified with most primers tested. Bands were scored (+/–) in the wild species and the PAUP computer program for phylogenetic analysis and the HyperRFLP program for genetic distance analysis were used to generate dendrograms showing genetic relationships among the diploid Arachis species evaluated. The two analyses produced nearly identical dendrograms of species relationships. In addition, approximately 100 F2 progeny from each of two interspecific crosses were evaluated for segregation of banding patterns. Although normal segregation was observed among the F2 progeny from both crosses, banding patterns were quite complex and undesirable for use in genetic mapping. The dominant behavior of the markers prevented the differentiation of heterozygotes from homozygotes with certainty, limiting the usefulness of arbitrary primer amplification products as markers in the construction of a genetic linkage map in peanut.  相似文献   

17.
In cultivated tetraploid potato (Solanum tuberosum), reduction to diploidy (dihaploidy) allows for hybridization to diploids and introgression breeding and may facilitate the production of inbreds. Pollination with haploid inducers (HIs) yields maternal dihaploids, as well as triploid and tetraploid hybrids. Dihaploids may result from parthenogenesis, entailing the development of embryos from unfertilized eggs, or genome elimination, entailing missegregation and the loss of paternal chromosomes. A sign of genome elimination is the occasional persistence of HI DNA in some dihaploids. We characterized the genomes of 919 putative dihaploids and 134 hybrids produced by pollinating tetraploid clones with three HIs: IVP35, IVP101, and PL-4. Whole-chromosome or segmental aneuploidy was observed in 76 dihaploids, with karyotypes ranging from 2n = 2x − 1 = 23 to 2n = 2x + 3 = 27. Of the additional chromosomes in 74 aneuploids, 66 were from the non-inducer parent and 8 from the inducer parent. Overall, we detected full or partial chromosomes from the HI parent in 0.87% of the dihaploids, irrespective of parental genotypes. Chromosomal breaks commonly affected the paternal genome in the dihaploid and tetraploid progeny, but not in the triploid progeny, correlating instability to sperm ploidy and to haploid induction. The residual HI DNA discovered in the progeny is consistent with genome elimination as the mechanism of haploid induction.

A large potato progeny population produced by crossing tetraploid cultivated clones to diploid Phureja lines displays rare instances of haploid inducer chromosomes, which are frequently damaged.  相似文献   

18.
Summary Tetraploid (2n=4x=48) 2EBN Mexican wild species in the series Longipedicellata, which consists of Solanum fendleri, S. hjertingii, S. papita, S. polytrichon, and S. stoloniferum, were crossed with two 2EBN cultivated diploid (2n=2x=24) clones. The resulting triploid hybrids (2n=3x=36) produced 2n pollen (triplandroids) by the mechanism of parallel orientation of anaphase II spindles. The percentage of stainable pollen in 520 triploids ranged between 0 and 23.5%, with a mean of 2.7%. Triploids producing between 13.0 and 23.5% stainable pollen were crossed as staminate parents to the tetraploid cultivars, resulting in abundant pentaploid (2n=5x=60) and near-pentaploid hybrid progeny. Crosses of triploids with lower percentage of stainable pollen as pollen parent to the tetraploid cultivars did not yield fruit, unless rescue pollen from a tetraploid cultivar was added 2 days later. Pentaploid hybrids were selected among selfed tetraploid progenies using morphological and isoxyme markers transmitted from their cultivated diploid parents. These pentaploid hybrids were vigorous and had uniformly sterile pollen. They were female fertile and were crossed with tetraploid cultivars, yielding an average of 19 seeds per fruit. Triplandroids provide the opportunity of transferring 2EBN tetraploid Mexican wild species in the series Longipedicellata germ plasm into the 4EBN cultivated potatoes.Cooperative investigations of the ARS, USDA, and the Washington State University Agricultural Research Center, Prosser, WA 99350, USA. H/LA Paper No. 90-03, College of Agriculture and Home Economies Research Center, Washington State University, Pullman, WA 99164, USA  相似文献   

19.
In most insect species where double matings occur, sperm from the second male preferentially fertilize subsequent eggs. However, we demonstrate here that, as already shown for some other hymenopteran species, this is not the case in the ichneumonid waspDiadromus pulchellus (Wesmeal): sperm from the first male usually father all the female progeny. This precedence of the first male sperm is also observed in double matings involving an haploid male and a diploid sterile male, whichever is the first mating male. We discuss the consequences of this phenomenon from an evolutionary point of view.  相似文献   

20.
Summary Crosses between male sterile L. corniculatus (2n=4x=24) and L. tenuis (2n=2x=12) plants were performed in order to verify the presence of 2n gametes in L. tenuis. All but one of the plants from these crosses had 2n=4x=24 and the L. corniculatus phenotype; this plant had 2n=2x=12 and the L. tenuis phenotype. The plants also showed good quantity of pollen at tripping, good pollen fertility and good percentage of seed setting in the backcross to L. corniculatus. On the whole, both cytological and morphological observations, showing that all but one of the plants from L. corniculatus x L. tenuis were normal tetraploids, suggest the existence of diploandrous gametes in L. tenuis. On the other hand, haploid parthenogenesis probably gave origin to the dihaploid plant 2n=2x=12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号