首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of microbial mats to develop sulfide-oxidizing biofims was explored. A bioreactor specially designed for the treatment of sulfide-containing effluents was inoculated with a microbial-mat sample, and a complex microbial biofilm with sulfide-oxidation activity developed. The microbial composition of the biofilm was studied by pigment, microscopy, and 16S rRNA gene analyses. Purple sulfur bacteria and diatoms were observed by microscopy, chlorophyll a and bacteriochlorophyll a were detected in the pigment analysis, and high genetic diversity was found in the 16S rRNA gene library. Specialized anaerobic sulfur oxidizers (i.e., phototrophic purple and green sulfur bacteria) dominated the library. Aerobic phototrophs (diatoms) also developed and the oxygen produced allowed the growth of aerobic sulfide oxidizers, such as Thiomicrospira-like spp. Cyanobacteria, which are significant organisms in natural microbial mats, did not develop in the reactor but unexpected uncultured members from the Epsilonproteobacteria developed profusely. Moreover, a variety of more minor organisms, such as members of the Cytophaga-Flavobacterium-Bacteroides (CFB) and purple non-sulfur bacteria (Roseospirillum sp.), were also present. The results showed that a complex community with high genetic and metabolic diversity, including many uncultured organisms, can develop in a laboratory-scale reactor.  相似文献   

2.
The spectral irradiance from 400 to 1,100 nm was measured with depth in the intertidal sand mats at Great Sippewissett Salt Marsh, Mass. These mats contained at least four distinct layers, composed of cyanobacteria, purple sulfur bacteria containing bacteriochlorophyll a (Bchl a), purple sulfur bacteria containing Bchl b, and green sulfur bacteria. Spectral irradiance was measured directly by layering sections of mat on a cosine receptor. Irradiance was also approximated by using a calibrated fiber-optic tip. With the tip, irradiance measurements could be obtained at depth intervals less than 250 μm. The irradiance spectra were correlated qualitatively and quantitatively with the distribution of the diverse chlorophyll pigments in this mat and were compared with spectra recorded in plain sand lacking pigmented phototrophs. We found that the shorter wavelengths (400 to 550 nm) were strongly attenuated in the top 2 mm of the mat. The longer wavelengths (red and near infrared) penetrated to much greater depths, where they were attenuated by Bchl a, b, and c-containing anoxygenic phototrophic bacteria. The specific attenuation bands in the irradiance spectra correlated with the specific in vivo absorption bands of the Bchl-protein complexes in the bacteria. We concluded that the pigments in the phototrophs had a profound affect on the light environment within the mat. It seems likely that the diverse Bchl-protein complexes found in the anoxygenic phototrophs evolved in dense mat environments as a result of competition for light.  相似文献   

3.
Organic biomarkers in marine sedimentary rocks hold important clues about the early history of Earth's surface environment. The chemical relicts of carotenoids from anoxygenic sulfur bacteria are of particular interest to geoscientists because of their potential to signal episodes of marine photic-zone euxinia such as those proposed for extended periods in the Proterozoic as well as brief intervals during the Phanerozoic. It is therefore critical to constrain the environmental and physiological factors that influence carotenoid production and preservation in modern environments. Here, we present the results of coupled pigment and nucleic acid clone library analyses from planktonic and benthic samples collected from a microbially dominated meromictic lake, Fayetteville Green Lake (New York). Purple sulfur bacteria (PSB) are abundant and diverse both in the water column at the chemocline and in benthic mats below oxygenated shallow waters, with different PSB species inhabiting the two environments. Okenone (from PSB) is an abundant carotenoid in both the chemocline waters and in benthic mats. Green sulfur bacteria and their primary pigment Bchl e are also represented in and below the chemocline. However, the water column and sediments are devoid of the green sulfur bacteria carotenoid isorenieratene. The unexpected absence of isorenieratene and apparent benthic production of okenone provide strong rationale for continued exploration of the microbial ecology of biomarker production in modern euxinic environments.  相似文献   

4.
Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, and salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54°C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected in the samples from both the thermophilic and mesophilic mats. Cultures of nonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolated from the mats developed at high (50.6–49.4°C) and low temperatures (45–20°C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealed in low-temperature mats. Truly thermophilic purple and green sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfur communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophyll a-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20°C) mat is of interest.  相似文献   

5.
An anaerobic phototrophic bacterial community in Lake Mogilnoe, a relict lake on Kil'din Island in the Barents Sea, was studied in June 1999 and September 2001. Irrespective of the season, the upper layer of the anaerobic zone of this lake had a specific species composition of sulfur phototrophic bacteria, which were dominated by the brown-colored green sulfur bacterium Chlorobium phaeovibrioides. The maximum number of phototrophic sulfur bacteria was observed in June 1999 at a depth of 9 m, which corresponded to a concentration of bacteriochlorophyll (Bchl) e equal to 4.6 mg/l. In September 2001, the maximum concentration of this pigment (3.4 mg/l) was found at a depth of 10 m. In both seasons, the concentration of Bchl a did not exceed 3 microg/l. Purple sulfur bacteria were low in number, which can be explained by their poor adaptation to the hydrochemical and optical conditions of the Lake Mogilnoe water. In June 1999, the water contained a considerable number of Pelodictyon phaeum microcolonies and Prosthecochloris phaeoasteroides cell chains, which was not the case in September 2001. A 16S rDNA-based phylogenetic analysis of pure cultures of phototrophic bacteria isolated from the lake water confirmed that the bacterial community is dominated by Chl. phaeovibrioides and showed the presence of three minor species, Thiocvstis gelatinosa, Thiocapsa sp., and Thiorhodococcus sp., the last of which is specific to Lake Mogilnoe.  相似文献   

6.
The multi-layered microbial mats in the sand flats of Great Sippewissett Salt Marsh were found to have five distinct layers of phototrophic organisms. The top 1–3 mm contained oxygenic phototrophs. The lower 3–4 mm contained anoxygenic phototrophic bacteria. The uppermost gold layer contained diatoms and cyanobacteria, and chlorophyll a was the major chlorophyll. The next layer down was green and was composed of primarily filamentous cyanobacteria containing chlorophyll a. This was followed by a bright pink layer of bacteriochlorophyll b-containing purple sulfur bacteria. The lowest layer was a thin dull green layer of green sulfur bacteria containing bacteriochlorophyll c. The distribution of the chlorophylls with depth revealed that two-thirds of the total chlorophyll in the mat was composed of bacteriochlorophylls present in the anoxygenic phototrophys. The cyanobacterial layers and both purple sulfur bacterial layers had photoautotrophic activity. Light was attenuated in the uppermost layers so that less than 5% of the total radiation at the surface penetrated to the layers of anoxygenic phototrophys.  相似文献   

7.
A species of facultative photo-organotrophic, purple, non-sulfur bacterium was isolated from mixed-species microbial mats, characterized and examined for metal tolerance and bioremediation potential. Contributing mats were natural consortia of microbes, dominated by cyanobacteria and containing several species of bacteria arranged in a laminar structure, stabilized within a gel matrix. Constructed microbial mats were used for bioremediation of heavy metals and organic chemical pollutants. Purple, non-sulfur bacteria are characteristically found in lower strata of intact mats, but their contributing function in mats survival and function by mediating the chemical environment has not been explored. The gram-negative rod-shaped bacterium, reported here, produced a dark red culture under phototrophic conditions, reproduced by budding and formed a lamellar intracytoplasmic membrane (ICM) system parallel to cytoplasmic membrane, which contained bacteriochlorophyll a and carotenoids. This strain was found to have multiple metal resistances and to be effective in the reductive removal of Cr(VI) and the degradation of 2,4,6-trichlorophenol. Based on the results obtained from morphology, nutrient requirements, major bacteriochlorophyll content, GC content, random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) profile and 16S-rDNA phylogenetic analysis, this member of the microbial mats may be identified as a new strain of the genus Rhodopseudomonas.  相似文献   

8.
Abstract Laminated microbial sediment ecosystems which develop in the upper tidal zone of Scapa Flow beaches, Orkney Islands were investigated with respect to depth profiles of chlorophyll a , bacteriochlorophyll a , pH, redox, oxygen and the following inorganic sulfur compounds: free sulfide, FeS, polysulfides, polythionates, elemental sulfur and thiosulfate. In addition, particle size distribution and light penetration were determined at all sampling locations.
Three main types of laminated sediment ecosystems were recognized, designated the 'classical' type (layer of cyanobacteria underlain by layer of purple sulfur bacteria), the 'single-layer' type (chlorophyll a containing organisms absent, purple sulfur bacteria at sediment surface), and the 'inverted' type (chlorophyll a containing organisms underlying purple sulfur bacteria). The dominant purple sulfur bacterium was Thiocapsa roseopersicina and Chromatium vinosum was observed less commonly. The principal cyanobacterium found in these sulfureta was Oscillatoria sp.
The depth horizon at which maximum populations of purple sulfur bacteria were recorded often did not coincide with the sulfide/oxygen interface but was located closer to the sediment surface where polysulfides, polythionates, elemental sulfur and occasionally thiosulfate were present. The structure of these sulfureta is discussed in relation to the chemolithotrophic growth capacities of Thiocapsa in the presence of oxygen.  相似文献   

9.
Soil aggregates between 2 and 5 mm from 35- and 45-year-old unreclaimed post-mining sites near Sokolov (Czech Republic) were divided into two groups: spherical and prismatic. X-ray tomography indicated that prismatic aggregates consisted of fragments of claystone bonded together by amorphous clay and roots while spherical aggregates consisted of a clay matrix and organic fragments of various sizes. Prismatic aggregates were presumed to be formed by plant roots and physical processes during weathering of Tertiary mudstone, while earthworms were presumed to contribute to the formation of spherical aggregates. The effects of drying and rewetting and glucose addition on microbial respiration, microbial biomass, and counts of bacteria in these aggregates were determined. Spherical aggregates contained a greater percentage of C and N and a higher C-to-N ratio than prismatic ones. The C content of the particulate organic matter was also higher in the spherical than in the prismatic aggregates. Although spherical aggregates had a higher microbial respiration and biomass, the growth of microbial biomass in spherical aggregates was negatively correlated with initial microbial biomass, indicating competition between bacteria. Specific respiration was negatively correlated with microbial biomass. Direct counts of bacteria were higher in spherical than in prismatic aggregates. Bacterial numbers were more stable in the center than in the surface layers of the aggregates. Transmission electron microscopy indicated that bacteria often occurred as individual cells in prismatic aggregates but as small clusters of cells in spherical aggregates. Ratios of colony forming units (cultivatable bacteria) to direct counts were higher in spherical than in prismatic aggregates. Spherical aggregates also contained faster growing bacteria.  相似文献   

10.
Mixed-species microbial mats that were dominated by the cyanobacterium Oscillatoria sp. and contained heterotrophic and purple autotrophic bacteria were constructed for specific bioremediation applications. When the mats were challenged with metals, production and secretion of metal-binding extracellular polysaccharide bioflocculants were observed. The concentration of these negatively charged polysaccharides was correlated with the removal of manganese from the water column beneath a surface microbial mat. Bioflocculants from an Oscillatoria sp. that was isolated from the mat were collected and concentrated for characterization. A chromatographic analysis revealed a heterogeneous population of polysaccharides with respect to charge density and molecular size. The subpopulation of polysaccharides which exhibited the highest level of flocculating activity was polyanionic and had a molecular weight of more than 200,000. A glycosyl analysis of the bioflocculants revealed the presence of galacturonic acid (2.2%) and glucuronic acid (1.86%). The presence of these components, which were negatively charged at the pH levels generated by the mats during photosynthesis (pH > 7.5), may account for the metal-binding properties of the mats.  相似文献   

11.
The diversity of purple and green sulfur bacteria in the multilayered sediments of the Ebro Delta was investigated. Specific oligonucleotide primers for these groups were used for the selective amplification of 16S rRNA gene sequences. Subsequently, amplification products were separated by denaturing gradient gel electrophoresis and sequenced, which yielded a total of 32 sequences. Six of the sequences were related to different cultivated members of the green sulfur bacteria assemblage, whereas seven fell into the cluster of marine or halophilic Chromatiaceae. Six sequences were clustered with the family Ectothiorhodospiraceae, three of the six being closely related to chemotrophic bacteria grouped together with Halorhodospira genus, and the other three forming a group related to the genus Ectothiorhodospira. The last thirteen sequences constituted a cluster where no molecular isolate from microbial mats has so far been reported. Our results indicate that the natural diversity in the ecosystem studied has been significantly underestimated in the past and point out the presence of novel species not related to all known purple sulfur bacteria. Furthermore, the detection of green sulfur bacteria, after only an initial step of enrichment, suggests that -- with the appropriate methodology -- several genera, such as Prosthecochloris, could be established as regular members of marine microbial mats.  相似文献   

12.
An anaerobic phototrophic bacterial community in Lake Mogilnoe, a relict lake on Kil'din Island in the Barents Sea, was studied in June 1999 and September 2001. Irrespective of the season, the upper layer of the anaerobic zone of this lake had a specific species composition of sulfur phototrophic bacteria, which were dominated by the brown-colored green sulfur bacterium Chlorobium phaeovibrioides. The maximum number of sulfur phototrophic bacteria was observed in June 1999 at a depth of 9 m, which corresponded to a concentration of bacteriochlorophyll (Bchl) e equal to 4.6 mg/l. In September 2001, the maximum concentration of this pigment (3.4 mg/l) was found at a depth of 10 m. In both seasons, the concentration of Bchl a did not exceed 3 μg/l. Purple sulfur bacteria were low in number, which can be explained by their poor adaptation to the hydrochemical and optical conditions of the Lake Mogilnoe water. In June 1999, the water contained a considerable number of Pelodictyon phaeum microcolonies and Prosthecochloris phaeoasteroides cell chains, which was not the case in September 2001. A 16S rDNA-based phylogenetic analysis of pure cultures of phototrophic bacteria isolated from the lake water confirmed that the bacterial community is dominated by Chl. phaeovibrioides and showed the presence of three minor species, Thiocystis gelatinosa, Thiocapsa sp., and Thiorhodococcus sp., the last of which is specific to Lake Mogilnoe.  相似文献   

13.
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.  相似文献   

14.
Microbial mats of coexisting bacteria and archaea date back to the early Archaean: many of the major steps in early evolution probably took place within them. The earliest mats may have formed as biofilms of cooperative chemolithotrophs in hyperthermophile settings, with microbial exploitation of diversifying niches. Anoxygenic photosynthesis using bacteriochlorophyll could have allowed mats, including green gliding bacteria, to colonize anaerobic shallow-water mesothermophile habitats. Exploitation of the Calvin–Benson cycle by purple bacteria allowed diversification of microbial mats, with some organisms in more aerobic habitats, while green sulphur bacteria specialized in anaerobic niches. Cyanobacterial evolution led to more complex mats and plankton, allowing widespread colonization of the globe and the creation of further aerobic habitat. Microbial mat structure may reflect this evolutionary development in broad terms, with anaerobic lower levels occupied by archaeal and bacterial respirers, fermenters and green bacteria, while the higher levels contain aerobic purple bacteria and are dominated by cyanobacteria. A possible origin of eukaryotes is from a fusion of symbiotic partners living across a redox boundary in a mat. The geological record of Archaean mats may be present as isotopic fingerprints: with the presence of cyanobacteria, mats may have had a nearly modern structure as early as 3.5 Ga ago (1 Ga = 109 years).  相似文献   

15.
Zodletone spring in Oklahoma is a unique environment with high concentrations of dissolved-sulfide (10 mm) and short-chain gaseous alkanes, exhibiting characteristics that are reminiscent of conditions that are thought to have existed in Earth's history, in particular the late Archean and early-to-mid Proterozoic. Here, we present a process-oriented investigation of the microbial community in two distinct mat formations at the spring source, (1) the top of the sediment in the source pool and (2) the purple streamers attached to the side walls. We applied a combination of pigment and lipid biomarker analyses, while functional activities were investigated in terms of oxygen production (microsensor analysis) and carbon utilization ((13)C incorporation experiments). Pigment analysis showed cyanobacterial pigments, in addition to pigments from purple sulfur bacteria (PSB), green sulfur bacteria (GSB) and Chloroflexus-like bacteria (CLB). Analysis of intact polar lipids (IPLs) in the source sediment confirmed the presence of phototrophic organisms via diacylglycerol phospholipids and betaine lipids, whereas glyceroldialkylglyceroltetraether additionally indicated the presence of archaea. No archaeal IPLs were found in the purple streamers, which were strongly dominated by betaine lipids. (13)C-bicarbonate- and -acetate-labeling experiments indicated cyanobacteria as predominant phototrophs in the source sediment, carbon was actively fixed by PSB/CLB/GSB in purple streamers by using near infrared light. Despite the presence of cyanobacteria, no oxygen could be detected in the presence of light, suggesting anoxygenic photosynthesis as the major metabolic process at this site. Our investigations furthermore indicated photoheterotrophy as an important process in both habitats. We obtained insights into a syntrophically operating phototrophic community in an ecosystem that bears resemblance to early Earth conditions, where cyanobacteria constitute an important contributor to carbon fixation despite the presence of high sulfide concentrations.  相似文献   

16.
The effects of oxygen concentration on photosynthesis and respiration in two hypersaline cyanobacterial mats were investigated. Experiments were carried out on mats from Eilat, Israel, with moderate photosynthetic activity, and mats from Mallorca, Spain, with high photosynthetic activity. The oxygen concentration in the overlying water above the mats was increased stepwise from 0% to 100% O2. Subsequent changes in oxygen concentration, gross photosynthetic rates, and pH values inside the mats were measured with microelectrodes. According to published reports on the regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme in the CO2-fixation pathway of phototrophs, we expected photosynthetic activity to decrease with increasing oxygen concentration. Gross photosynthetic and total respiration rates in both mats were highest when the O2 concentration was at 0% in the overlying water. Net oxygen production rates under these conditions were the same as under air saturation (21% O2), while gross photosynthetic and respiration rates were lowest at air saturation. In both mats, gross photosynthetic and respiration rates increased upon gradually increasing the oxygen concentration in the overlying water from 21% to 100%. These results contradict the expectation that photosynthesis decreases with increasing oxygen concentration. Increased photosynthetic rates at oxygen concentrations above 21% were probably caused by enhanced oxidation of organic matter and concomitant CO2 production due to the increased oxygen availability. The cause of the high respiration rates at 0% O2 in the overlying water was presumably the enhanced excretion of photosynthetic products during increased photosynthesis. We conclude that the effect of the O2/CO2 concentration ratio on the activity of Rubisco as demonstrated in vitro on enzyme extracts cannot be extrapolated to the situation in intact microbial mats, because the close coupling of the activity of primary producers and heterotrophic bacteria plays a major role in this ecosystem.  相似文献   

17.
Abstract: A deterministic one-dimensional reaction diffusion model was constructed to simulate benthic stratification patterns and population dynamics of cyanobacteria, purple and colorless sulfur bacteria as found in marine microbial mats. The model involves the major biogeochemical processes of the sulfur cycle and includes growth metabolism and their kinetic parameters as described from laboratory experimentation. Hence, the metabolic production and consumption processes are coupled to population growth. The model is used to calculate benthic oxygen, sulfide and light profiles and to infer spatial relationships and interactions among the different populations. Furthermore, the model is used to explore the effect of different abiotic and biotic environmental parameters on the community structure. A strikingly clear pattern emerged of the interaction between purple and colorless sulfur bacteria: either colorless sulfur bacteria dominate or a coexistence is found of colorless and purple sulfur bacteria. The model predicts that purple sulfur bacteria only proliferate when the studied environmental parameters surpass well-defined threshold levels. However, once the appropriate conditions do occur, the purple sulfur bacteria are extremely successful as their biomass outweighs that of colorless sulfur bacteria by a factor of up to 17. The typical stratification pattern predicted closely resembles the often described bilayer communities which comprise a layer of purple sulfur bacteria below a cyanobacterial top-layer; colorless sulfur bacteria are predicted to sandwich in between both layers. The profiles of oxygen and sulfide shift on a diel basis similarly as observed in real systems.  相似文献   

18.
The microenvironment and community composition of microbial mats developing on beaches in Scapa Flow (Orkney Islands) were investigated. Analysis of characteristic biomarkers (major fatty acids, hydrocarbons, alcohols, and alkenones) revealed the presence of different groups of bacteria and microalgae in mats from Waulkmill and Swanbister beach, including diatoms, Haptophyceae, cyanobacteria, and sulfate-reducing bacteria. These analyses also indicated the presence of methanogens, especially in Swanbister beach mats, and therefore a possible role of methanogenesis for the carbon cycle of these sediments. High amounts of algal lipids and slightly higher numbers (genera, abundances) of cyanobacteria were found in Waulkmill Bay mats. However, overall only a few genera and low numbers of unicellular and filamentous cyanobacteria were present in mats from Waulkmill and Swanbister beach, as deduced from CLSM (confocal laser scanning microscopy) analysis. Spectral scalar irradiance measurements with fiber-optic microprobes indicated a pronounced heterogeneity concerning zonation and density of mainly anoxygenic phototrophs in Swanbister Bay mats. By microsensor and T-RFLP (terminal restriction fragment length polymorphism) analysis in Swanbister beach mats, the depth distribution of different populations of purple and sulfate-reducing bacteria could be related to the microenvironmental conditions. Oxygen, but also sulfide and other (inorganic and organic) sulfur compounds, seems to play an important role in the stratification and diversity of these two major bacterial groups involved in sulfur cycling in Swanbister beach mats.  相似文献   

19.
The microzination of phototrophic bacteria in a flat laminated microbiol mat at Great Sippewissett Salt Marsh on Cape Cod, Massachusetts, was studied using a combination of scanning and transmission electron microscopy, light microscopy and photosynthetic pigment analysis. Comparison of pigment content and ultrastructural information from electron microscopy of thin sections allowed us to determine the major groups of photosynthetic bacteria present. The approximately 1-cm-thick mat is located in sandy intertidal sediments of the marsh and comprised four to five distinctly colored layers. The uppermost brown layer contained Lyngbya, Nostoc, Phormidium (cyanobacteria) and Navicula (diatom) species. An intermediate bluish-green layer was dominated by Oscillatoria species. A central pink layer contained purple sulfur bacteria such as Amoebobacter, Thiocapsa, Chromatium and Thiocystis species, Below this was a distinctive orange layer, formed largely by one species of purple sulfur bacteria, Thiocapsa pfennigii. The lowermost and thinnest layer contained green sulfur bacteria of the genus Prosthecochloris, a very small prosthecate species with numerous knobby projections; this layer was not always present. Below this, where pigments were generally absent, were dark gray and black iron sulfide-rich sediments. Remnants of older decayed mats could be found deeper in the sediment. Extensive production of microbial extracellular polymers in all layers appeared to be responsible for attachment of cells to sand grains, for lamination of layers and for structural integrity of the mat as a whole. Below the layer of green sulfur bacteria, binding of sediment by microbial polymers ceased abruptly. Possibly in response to decreasing light penetration, the mean size of bacterial cells decreased in successively deeper layers. In the lowest layer where light penetration was very low, green sulfur bacteria with highly convoluted surfaces occurred. The increase in cell surface area-to-volume ratio may allow such organisms to survive at low light levels.  相似文献   

20.
Occurrence of Purple Sulfur Bacteria in a Sewage Treatment Lagoon   总被引:5,自引:4,他引:1       下载免费PDF全文
The ecology of purple sulfur bacteria in a sewage oxidation lagoon was investigated. Chemical changes in the lagoon were investigated by monitoring biochemical oxygen demand (BOD(5)), sulfide, sulfate, phosphate, total carbohydrates, volatile acids, alkalinity, and pH. Lagoon water temperatures were observed daily. Microbial ecological relationships were deduced by enumerating coliforms, total bacteria other than anaerobes [Tryptone Glucose Extract (TGE) agar], methane formers such as Methanobacterium formicicum, sulfate reducers, purple sulfur bacteria, and algae. Finally, two strains of purple sulfur bacteria were characterized. Two populations, purple sulfur bacteria and total bacteria (TGE agar), reached maximal concentrations in the warmest part of the 1967 summer. Purple sulfur bacteria reached maximal numbers as concentrations of sulfide and volatile acids were depleted, whereas carbohydrates and alkalinity remained unchanged. Low sulfate levels, which were not limiting for sulfate reducers, may be attributable to storage of sulfur within purple sulfur bacteria. No biological, chemical, or physical agent was linked to the removal of coliforms. The increase of algae in the late summer of 1967 may have been related to the low organic content of the lagoon during this period. Although lagoon pH (7.7 to 8.2) was favorable for purple sulfur bacterial growth, temperatures and sulfides were not optimal in the lagoon for these organisms. Chromatium vinosum and Thiocapsa floridana (the predominant lagoon purple sulfur organism in 1967 and 1968) utilized certain carbohydrates, amino acids, volatile acids, and Krebs cycle intermediates. Also purple sulfur bacteria lowered BOD levels as demonstrated by the growth of T. floridana in sterilized sewage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号