首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The review is dedicated to the role of cell elongation in plant growth and morphogenesis. The ratios of cell division to elongation, cell competence for the initiation of elongation, main features of the metabolism of elongating cells, and physiological processes realizing elongation have been considered on the examples of seed germination and growth of roots, stems, and leaves. A special attention was paid to the vacuole as a specific feature of plant cells, pathways of its formation, and its role in maintenance of ion and water homeostasis in the elongating cell. The plant can modify its morphology according to changes in the environmental conditions via cell elongation.  相似文献   

2.
The cell wall is the major limiting factor for plant growth. Wall extension is thought to result from the loosening of its structure. However, it is not known how this is coordinated with wall synthesis. We have identified two novel allelic cellulose-deficient dwarf mutants, kobito1-1 and kobito1-2 (kob1-1 and kob1-2). The cellulose deficiency was confirmed by the direct observation of microfibrils in most recent wall layers of elongating root cells. In contrast to the wild type, which showed transversely oriented parallel microfibrils, kob1 microfibrils were randomized and occluded by a layer of pectic material. No such changes were observed in another dwarf mutant, pom1, suggesting that the cellulose defect in kob1 is not an indirect result of the reduced cell elongation. Interestingly, in the meristematic zone of kob1 roots, microfibrils appeared unaltered compared with the wild type, suggesting a role for KOB1 preferentially in rapidly elongating cells. KOB1 was cloned and encodes a novel, highly conserved, plant-specific protein that is plasma membrane bound, as shown with a green fluorescent protein-KOB1 fusion protein. KOB1 mRNA was present in all organs investigated, and its overexpression did not cause visible phenotypic changes. KOB1 may be part of the cellulose synthesis machinery in elongating cells, or it may play a role in the coordination between cell elongation and cellulose synthesis.  相似文献   

3.
This review covers the data concerning the relationship between cell growth and aquaporins in the cell membranes, the plasmalemma and tonoplast. Genes of aquaporins, water channel-forming proteins, are actively expressed before the onset and during cell elongation, thus providing accumulation of aquaporin protein and higher membrane hydraulic conductivity. As a result, an additional water uptake favors cell vacuolation and elongation. The review gives information on all growing plant organs. In actively dividing plant cells, only plasmalemma aquaporins are synthesized, whereas in elongating cells, tonoplast aquaporins are synthesized as well. The review includes also the findings of aquaporin research after growth completion.  相似文献   

4.
Cells at the elongation zone expand longitudinally to form the straight central axis of plant stems, hypocotyls and roots, and transverse cortical microtubule arrays are generally recognized to be important for the anisotropic growth. Recessive mutations in either of two Arabidopsis thaliana SPIRAL loci, SPR1 or SPR2, reduce anisotropic growth of endodermal and cortical cells in roots and etiolated hypocotyls, and induce right-handed helical growth in epidermal cell files of these organs. spr2 mutants additionally show right-handed twisting in petioles and petals. The spr1spr2 double mutant's phenotype is synergistic, suggesting that SPR1 and SPR2 act on a similar process but in separate pathways in controlling cell elongation. Interestingly, addition of a low dose of either of the microtubule-interacting drugs propyzamide or taxol in the agar medium was found to reduce anisotropic expansion of endodermal and cortical cells at the root elongation zone of wild-type seedlings, resulting in left-handed helical growth. In both spiral mutants, exogenous application of these drugs reverted the direction of the epidermal helix, in a dose-dependent manner, from right-handed to left-handed; propyzamide at 1 microM and taxol at 0.2-0.3 microM effectively suppressed the cell elongation defects of spiral seedlings. The spr1 phenotype is more pronounced at low temperatures and is nearly suppressed at high temperatures. Cortical microtubules in elongating epidermal cells of spr1 roots were arranged in left-handed helical arrays, whereas the highly isotropic cortical cells of etiolated spr1 hypocotyls showed microtubule arrays with irregular orientations. We propose that a microtubule-dependent process and SPR1/SPR2 act antagonistically to control directional cell elongation by preventing elongating cells from potential twisting. Our model may have implicit bearing on the circumnutation mechanism.  相似文献   

5.
A method was developed where soybean seedlings were grown without roots to study the influence of hormones of root origin on shoot growth. Excision of the root resulted in inhibition of apical section growth and DNA synthesis and inhibited elongating section growth. A synthetic cytokinin restored DNA synthesis in the apical section, but did not influence growth in either the apical or elongating sections. Low concentrations of gibberellin with the cytokinin restored growth in the apical section. Gibberellin alone was sufficient to restore growth in the elongating section.An inhibitor of DNA synthesis, 5-fluorodeoxyuridine, inhibited the increase in apical section DNA without inhibiting control or gibberellin-induced growth in the elongating section. Experiments with (14)C-thymidine resulted in no DNA labeling differences in the elongating section under conditions where gibberellin-induced elongation varied from 50% to 73% above controls. It was concluded that gibberellin-induced elongation in soybean hypocotyl occurred in the absence of DNA synthesis. Gibberellin does stimulate DNA synthesis in the apical tissue apart from its effect on cell elongation.Excised soybean hypocotyl elongated maximally at 10(-6)m auxin. At higher auxin concentrations, fresh weight and ethylene production increased, but elongation was reduced. Addition of GA to the higher auxin concentrations resulted in a 50% inhibition in auxin-induced ethylene production and resumption in maximal elongation. Added ethylene inhibited elongation 30% at 2 mul/l. Addition of up to 100 mul/l ethylene did not inhibit elongation with GA present in the incubation medium. Thus GA may counteract ehtylene inhibition of cell elongation in addition to inhibiting ethylene production in auxin-treated tissues.  相似文献   

6.
Cellular basis of hypocotyl growth in Arabidopsis thaliana.   总被引:11,自引:1,他引:10       下载免费PDF全文
The Arabidopsis thaliana hypocotyl is widely used to study the effects of light and plant growth factors on cell elongation. To provide a framework for the molecular-genetic analysis of cell elongation in this organ, here we describe, at the cellular level, its morphology and growth and identify a number of characteristic, developmental differences between light-grown and dark-grown hypocotyls. First, in the light epidermal cells show a characteristic differentiation that is not observed in the dark. Second, elongation growth of this organ does not involve significant cortical or epidermal cell divisions. However, endoreduplication occurs, as revealed by the presence of 4C and 8C nuclei. In addition, 16C nuclei were found specifically in dark-grown seedlings. Third, in the dark epidermal cells elongate along a steep, acropetal spatial and temporal gradient along the hypocotyl. In contrast, in the light all epidermal cells elongated continuously during the entire growth period. These morphological and physiological differences, in combination with previously reported genetic data (T. Desnos, V. Orbovic, C. Bellini, J. Kronenberger, M. Caboche, J. Traas, H. Höfte [1996] Development 122: 683-693), illustrate that light does not simply inhibit hypocotyl growth in a cell-autonomous fashion, but that the observed growth response to light is a part of an integrated developmental change throughout the elongating organ.  相似文献   

7.
The dynamics of root growth, proliferation of initial cells of the root cap, rhizodermis, and central metaxylem, as well as structural changes in the cells induced by a 72-h exposure to a high (0.1 mM) concentration of NiSO4 were studied in 3-day-old wheat (Triticum aestivum L.) seedlings. In the roots of control plants, we observed a 12-h rhythm of changes in the length of the cells that completed elongating. Upon the treatment with nickel, this effect was negated, and a considerable reduction in the root length increment was observed in 12 h. In 24 h, root growth essentially ceased. Cell elongation was suppressed acropetally, and the cells, whose elongation was over, became shorter. In the meristem and apical part of the elongation zone, slow cell growth continued during the second and even third days. Autoradiography showed that the earliest effect of nickel on the processes of root morphogenesis observed in 6 h was a suppression of cell transition to DNA synthesis. The cells, where DNA synthesis has already started or which were in other stages of the cycle, continued to pass slowly through the cycle and completed it. Sister cells formed as a result of division subsequently left the cycle in the phase G1 and transited to dormancy. It was found that the main mechanism of cell proliferation cessation was the suppression of cell transition to DNA synthesis. In the cells elongating when exposed to nickel, tissue-specific changes in the nucleus structure were observed (chromatolysis in the rhizodermis and cortex, pycnosis in the endodermis, a disturbance of the nucleus structure in the central metaxylem). These disorders were only observed after cessation of elongation. Root incubation in 0.1 mM nickel solution did not affect the onset of cell differentiation in the xylem and metaphloem and shifted its beginning to the root tip. However, in 24 h the initiation and growth of root hairs were suppressed. It was concluded that tissue-specific nickel-induced changes in the nucleus structure in the elongating cells do not cause the cessation of root growth, although point to nickel toxic effect on the cells in the course of elongation.  相似文献   

8.
微管骨架在轮藻节间细胞伸长生长中的作用   总被引:1,自引:0,他引:1  
利用免疫荧光定位及激光共聚焦扫描显微镜,结合细胞生长曲线的定量测定,对不同生长阶段的轮藻节间细胞微管骨架进行了观察研究,结果如下:轮藻顶端生长活跃的新生细胞中,与细胞长轴垂直的周质微管(cortical microtubules)占绝对优势,随着生长速率的减慢,周质微管由垂直于细胞长轴逐渐转为平行排列;基部生长基本停止的节间细胞中,胞内微管则以平行细胞长轴为主;不同生长阶段节间细胞的微管骨架,对微管特异解聚剂黄草消(oryzalin)处理的敏感性表现不相同。顶端生长活跃的节间细胞经oryzalin处理40min后,绝大多数周质微管发生解聚;而基部生长基本停止的老细胞中,即使延长处理时间,仍残留一些尚未完全解聚的微管片段;10μmol/L微管解聚剂oryzalin处理轮藻顶端新生细胞,在高精度的细胞伸长生长测定装置监测下,发现oryzalin对细胞的伸长生长速率有明显的抑制作用,去掉药剂后,伸长生长又有一定的恢复。并且发现,经oryzalin处理后,微管的解聚(40min左右)与顶端节间细胞伸长生长的停止(100min左右)两者间存在着时间上的差异,即微管解聚在先,细胞伸长停止在后。以上结果均说明微管骨架在轮藻节间细胞生长中具有重要作用。  相似文献   

9.
The expression patterns of cell wall proteins in mung bean hypocotylsboth before and during cell elongation have been investigated.The results suggest two clear conclusions. First, it is shownthat there is a large population of cell wall-specific proteins(at least 20 abundant ones and perhaps as many as 250 minorones) detectable on 2-D gels. Second, of these proteins morethan half differ markedly in their levels of expression betweennon-elongating or elongating cells in the hypocotyl tissue.Some are up-regulated while others are down-regulated. Variouscontrols ensure that cytosolic contamination is minimal andthat the changes seen represent real switches in cell wall proteinexpression. The results indicate that this approach providesa sound strategy for the future identification and characterizationof cell wall proteins specifically associated with cell elongation. Key words: Cell wall proteins, plant cell elongation, 2-D gels, mung bean, extension growth  相似文献   

10.
Recent developments in water status measurement techniques using the psychrometer, the pressure probe, the osmometer and pressure chamber are reviewed, and the process of cell elongation from the viewpoint of plant-water relations is discussed for plants subjected to various environmental stress conditions. Under water-deficient conditions, cell elongation of higher plants can be inhibited by interruption of water flow from the xylem to the surrounding elongating cells. The process of growth inhibition at low water potentials could be reversed by increasing the xylem water potential by means of pressure application in the root region, allowing water to flow from the xylem to the surrounding cells. This finding confirmed that a water potential field associated with growth process,i.e., the growth-induced water potential, is an important regulating factor for cell elongation other than metabolic factors. The concept of the growth-induced water potential was found to be applicable for growth retardation caused by cold stress, heat stress, nutrient deficiency and salinity stress conditions. In the present review, the fact that the cell elongation rate is primarily associated with how much water can be absorbed by elongating cells under water-deficiency, nutrient deficiency, salt stress, cold stress and heat stress conditions is suggested.  相似文献   

11.
Xyloglucan, the primary hemicellulosic cell wall polysaccharide in dicotyledons, undergoes substantial modification during auxin-stimulated cell expansion. To identify candidates for mediating xyloglucan turnover, the expression and auxin regulation of tomato Cel7 and LeEXT , genes encoding an endo-1,4-β-glucanase (EGase) and a xyloglucan endotransglycosylase (XET), respectively, were examined. LeEXT mRNA was present primarily in elongating regions of the hypocotyl and was induced to higher levels by hormone treatments that elicited elongation of hypocotyl segments. Cel7 mRNA abundance was very low in both elongating and mature regions of the hypocotyl but was induced to accumulate to high levels in both hypocotyl regions by auxin application. Analysis of the time dependence of expression of Cel7 and LeEXT during auxin treatment suggested that induction of these genes is not required for rapid growth responses but may participate in the cell wall changes involved in sustained cell elongation. Localization of Cel7 and LeEXT mRNA by in situ hybridization revealed that both genes are expressed in outer cell layers of the hypocotyl. In untreated etiolated seedlings, LeEXT mRNA was detected in epidermal cells of the elongating region, a tissue considered to play a key role in auxin-induced elongation. After auxin treatment, Cel7 and LeEXT mRNA showed an overlapping spatial distribution in the epidermis and outer cortical cell layers. We conclude that LeEXT and Cel7 exhibit both unique and overlapping patterns of expression and have the potential to act cooperatively in mediating cell wall disassembly associated with expansive growth.  相似文献   

12.
This study deals with internodal development in vegetative plants of Nicotiana tabacum cv Samsun NN and its reflection in changes of the cellular competence for regeneration. During elongation of the internodes, the cells of the epidermis, subepidermis, and cortex exclusively expanded and increased their DNA content cell type specifically, generally from 2C to 4C. Cells with the 8C DNA content were found mainly among the cortex cells of mature internodes. The frequency of shoot regeneration (directly from subepidermal and epidermal cells together) on thin cell layer explants increased to an optimum along with elongation of the internodes and decreased in mature internodes along with aging. The frequencies of diploid shoots among the regenerants from elongating and mature internodes were high (88 and 75% on the average, respectively), indicating that most cells that had achieved the 4C DNA content generally retained the G2 phase of the diploid cell cycle. Shoots regenerated from explants of young plant material mainly had a vitrified appearance. The occurrence of this type of malformed growth was already determined by the physiological state of the cells in the internode and did not interfere with their acquisition of competence. Vitrification was unrelated to the degree of polysomaty of the internodal tissue. Using the occurrence of tetraploid root regenerants (from intermediate cortex-derived callus), up to a frequency of 50%, we show that the position in the plant where a majority of the 4C cortex cells switched to the G1 phase of the tetraploid cell cycle was at the transition from the elongation phase to the mature phase.  相似文献   

13.
Xyloglucan endotransglycosylase (XET) has been proposed to contribute to cell elongation through wall loosening. To explore this relationship further, we assayed this enzyme activity in suspensions of carrot (Daucus carota L.) cells exhibiting various rates of cell elongation. In one cell line, elongation was induced by dilution into dichlorophenoxyacetic acid (2,4-D)-free medium. During this elongation, 93% of the XET activity was found in the culture medium; in nonelongating controls, by contrast, 68% was found in the cell extracts even though the specific activity of these extracts was lower than in the elongating cells. By far the highest rates of XET secretion per cell were in the elongating cells. A second cell line was induced to undergo somatic embryogenesis by dilution into 2,4-D-free medium. During the first 6 d, numerous globular embryoids composed of small, isodiametric cells were formed in the absence of cell elongation; extracellular XET activity was almost undetectable, and intracellular specific activity markedly declined. After 6 d, heart, torpedo, and cotyledonary embryoids began to appear (i.e. cell elongation resumed); the intracellular specific activity of XET rose rapidly and >80% of the XET activity accumulated in the medium. Thus, nonexpanding cell suspensions (whether or not they were rapidly dividing) produced and secreted less XET activity than did expanding cells. We propose that a XET molecule has an ephemeral wall-loosening role while it passes through the load-bearing layer of the wall on its way from the protoplast into the culture medium.  相似文献   

14.
Abstract. The proposal that rapidly elongating plant cells cannot maintain plasma membrane synthesis by means of the normal endomembrane system has been examined in elongating segments of Avena sativa coleoptiles. Segments were sampled and fixed for electron microscopy, before and after elongation on auxin solutions. Mean cell extensions, cytoplasmic volumes, dictyosomc numbers, and vesicle sizes and numbers were determined. It was shown that there are sufficient dictyosomes present to sustain the vesicle production necessary for the observed plasma membrane extension.  相似文献   

15.
Highly organized interphase cortical microtubule (MT) arrays are essential for anisotropic growth of plant cells, yet little is known about the molecular mechanisms that establish and maintain the order of these arrays. The Arabidopsis thaliana spiral1 (spr1) mutant shows right-handed helical growth in roots and etiolated hypocotyls. Characterization of the mutant phenotypes suggested that SPR1 may control anisotropic cell expansion through MT-dependent processes. SPR1 was identified by map-based cloning and found to encode a small protein with unknown function. Proteins homologous to SPR1 occur specifically and ubiquitously in plants. Genetic complementation with green fluorescent protein fusion proteins indicated that the SPR1 protein colocalizes with cortical MTs and that both MT localization and cell expansion control are conferred by the conserved N- and C-terminal regions. Strong SPR1 expression was found in tissues undergoing rapid cell elongation. Plants overexpressing SPR1 showed enhanced resistance to an MT drug and increased hypocotyl elongation. These observations suggest that SPR1 is a plant-specific MT-localized protein required for the maintenance of growth anisotropy in rapidly elongating cells.  相似文献   

16.
The molecular control of cell elongation, one of the basic processes of plant morphogenesis, is still largely not understood. This paper describes a Petunia hybrida mutant of dumpy phenotype, trapu, which identifies tra1, a gene required for cell elongation and mediating responses to applied cytokinin. This mutant displayed an extreme reduction in length, due to a single recessive mutation which was expressed in every part of the plant and during the entire life of the plant, including the mature embryo. The mutant was unable to flower. The mutant roots, as well as the leafy organs, were short and thick, and the root elongation zone, hypocotyl and petioles were absent. The mutant plantlets responded neither to applied auxin nor to gibberellin, indicating that this phenotype was not caused by a deprivation of these phytohormones. However, unlike the wildtype, the mutant growth was stimulated by applied cytokinin, even though its morphology remained abnormal. A histological study revealed the presence of all tissue types in normal positions, including root hairs and vascular bundles. The mutant's cells were rounder in every tissue. Both shoot and root meristems were disorganized, without consistent cell shape and size. The regular cell files, which are typical of a normal root apex organization, were totally absent in the mutant root apex. Indirect immunofluorescence of α-tubulin on root apices showed the cortical microtubules in the mutant cells to be unable to form the parallel arrays in elongating cells and the preprophase band in dividing cells. This default resulted in the prevention of unidirectional cell elongation and formation of regular cell files, thus causing the trapu phenotype. This paper discusses the similarities and differences of trapu to the Arabidopsis mutants, fass and ton, trapu confirming that the establishment of plant body pattern and differentiation can be dissociated from cell elongation.  相似文献   

17.
The effect of coumarin on the root growth was studied on roots from intact plants, isolated roots and isolated elongating zones. All material was cultivated aseptically. A new method was developed for sterile culture of intact plants in flowing nutrient medium. The effects on cell division and cell elongation were studied separately. An effect on both these processes can be established at all concentrations that affect the root growth. The concentration-growth curve has an “all-or-none” appearance. Coumarin inhibits the transverse divisions in all cell layers; the perivascular layers seem to be more sensitive. Also the mitotic activity that is involved in the initiation of laterals is inhibited. The longitudinal divisions within the stele are enhanced. Coumarin decreases the cell length in all cell layers, most likely with greater relative sensitivity in the perivascular layers. Studies on the time course of cell elongation in both attached corn roots and isolated elongating zones reveal that the decrease in cell length is caused exclusively by a decrease in the maximal rate of elongation, whereas the duration of the elongation is unchanged. With each decrease of the cell length, the cell diameter is increased. The two changes are intimately connected within the greater part of the active region of concentration. Studies on the time course of the radial expansion in isolated elongating zones show a strict connection in time between cell elongation and radial expansion. The radial expansion leads to unchanged or increased cell volume at most concentrations and for most cell types. Coumarin causes an inhibition of the longitudinally directed processes and a stimulation of the radially directed ones. This is interpreted as indicating that the formative system is disengaged or reorientated, i.e., the polarity of the cells is changed. Through experiments partly with isolated elongating zones and partly by disruption of the linear phase by means of mannitol, the inhibitory effect of coumarin could be localized to the first non-linear phase of the elongation. The results were compared with earlier findings in the literature. The microtubuli are proposed as a conceivable main Component in the formative system common to both cell division and cell elongation. These are assumed to be affected by changes in the SH/SS balance produced by coumarin.  相似文献   

18.
19.
Plant cell walls contain a glycoprotein component rich in the otherwise rare amino acid hydroxyproline. We examined the synthesis and accumulation of wall hydroxyproline during different states of elongation growth in pea epicotyls. Light-grown peas contained more wall hydroxyproline than their taller, dark-grown counterparts. When elongation was studied by marking growing stems in situ, there was a marked accumulation of wall hydroxyproline coincident with the cessation of elongation. Dividing and elongating regions of the epicotyl showed less wall hydroxyproline than did regions where elongation was no longer occurring.Hydroxyproline biosynthesis was examined by incubation of excised sections of tissues in various growth states in 14C-proline. The extent of conversion of these residues to 14C-hydroxyproline served as a measure of the rate of hydroxyproline synthesis. This rate was highest in tissues which had ceased elongation. The low rate of hydroxyproline synthesis in dividing and elongating cells was probably not due to the inability to hydroxylate peptidyl proline or to secrete proteins.These data show a positive correlation between the synthesis and accumulation of cell wall hydroxyproline and the cessation of cell elongation in pea epicotyls.  相似文献   

20.
Profiles of water potential (Psi(w)) were measured from the soil through the plant to the tip of growing leaves of fully established maize (Zea mays L.). The profiles revealed gradients in transpiration-induced Psi(w) extending upward along the transpiration path, and growth-induced Psi(w) extending radially between the veins in the elongating region of the leaf base. Water moving upward required a small gradient while that moving radially required a much larger gradient primarily because the protoxylem vessels were encased in many small, undifferentiated cells that were likely to act as a barrier to radial flow. Upon maturation, these small cells enlarged and some began to conduct water, probably decreasing the barrier. In the mature leaf, the growth-induced Psi(w) were absent but the transpiration-induced Psi(w) remained. When leaves were growing, the growth-induced Psi(w) moved water into the elongating cells during the day and night, and it shifted with changes in transpiration-induced Psi(w). The shift involved solutes accumulating in the growing region. When water was withheld, the growth-induced Psi(w) disappeared and leaf elongation ceased even though turgor pressure was at its highest. Turgor was maintained by osmotic adjustment that doubled the osmotic potential of the elongating cells. If elongation resumed at night or with rewatering, the growth-induced Psi(w) reappeared. If pressure was applied to the soil/root system to cause guttation and re-establish the growth-induced Psi(w), elongation resumed immediately. These findings support the hypothesis that the primary control of growth is the disappearance and reappearance of the growth-induced Psi(w) because the potential changed in the xylem and nearby cells, blocking or permitting radial water movement and thus blocking or permitting growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号