首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The opacity (Opa) proteins of pathogenic Neisseria spp. are adhesins, which play an important role in adhesion and invasion of host cells. Most members of this highly variable family of outer membrane proteins can bind to the human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). Several studies have identified the Opa-binding region on the CEACAM receptors; however, not much is known about the binding sites on the Opa proteins for the corresponding CEACAM-receptors. The high degree of sequence variation in the surface-exposed loops of Opa proteins raises the question how the binding sites for the CEACAM receptors are conserved. Neisseria meningitidis strain H44/76 possesses four different Opa proteins, of which OpaA and OpaJ bind to CEACAM1, while OpaB and OpaD bind to CEACAM1 and CEA. A sequence motif involved in binding to CEACAM1 was identified by alanine scanning mutagenesis of those amino acid residues conserved within the hypervariable (HV) regions of all four Opa proteins. Hybrid Opa variants with different combinations of HV-1 and HV-2 derived from OpaB and OpaJ showed a reduced binding to CEACAM1 and CEA, indicating that particular combinations of HV-1 and HV-2 are required for the Opa binding capacity. Homologue scanning mutagenesis was used to generate more refined hybrids containing novel combinations of OpaB and OpaJ sequences within HV-1 and HV-2. They could be used to identify residues determining the specificity for CEA binding. The combined results obtained with mutants and hybrids strongly suggest the existence of a conserved binding site for CEACAM receptors by the interaction of HV-1 and HV-2 regions.  相似文献   

2.
CEACAM1 is a member of the carcinoembryonic antigen (CEA) family. Isoforms of murine CEACAM1 serve as receptors for mouse hepatitis virus (MHV), a murine coronavirus. Here we report the crystal structure of soluble murine sCEACAM1a[1,4], which is composed of two Ig-like domains and has MHV neutralizing activity. Its N-terminal domain has a uniquely folded CC' loop that encompasses key virus-binding residues. This is the first atomic structure of any member of the CEA family, and provides a prototypic architecture for functional exploration of CEA family members. We discuss the structural basis of virus receptor activities of murine CEACAM1 proteins, binding of Neisseria to human CEACAM1, and other homophilic and heterophilic interactions of CEA family members.  相似文献   

3.
Opacity-associated (Opa) proteins are outer membrane proteins which play a critical role in the adhesion of pathogenic Neisseria spp. to epithelial and endothelial cells and polymorphonuclear neutrophils. The adherence is mainly mediated by the CD66-epitope-containing members of the carcinoembryonic-antigen family of human cell-adhesion molecules (CEACAM). For the analysis of the specific interactions of individual Opa proteins with their receptors, pure protein is needed in its native conformation. In this study, we describe the isolation and structural analysis of opacity proteins OpaJ129 and OpaB128 derived from Neisseria meningitidis strain H44/76. When the Opa proteins were produced with the phoE signal sequence in Escherichia coli, they were localized at the cell surface and the recombinant bacteria were found to specifically interact with CEACAM1. For refolding and purification, the proteins were overproduced without their signal sequences in E. coli, resulting in its cytoplasmic accumulation in the form of inclusion bodies. After solubilization of the inclusion bodies in urea, the proteins could be folded efficiently in vitro, under alkaline conditions by dilution in ethanolamine and the detergent n-dodecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate (SB12). The structure of the refolded and purified proteins, determined by circular dichroism, indicated a high content of beta-sheet conformation, which is consistent with previously proposed topology models for Opa proteins. A clear difference was found between the binding of refolded vs. denatured OpaJ protein to the N-A1 domain of CEACAM1. Almost no binding was found with the denatured Opa protein, showing that the Opa-receptor interaction is conformation-dependent.  相似文献   

4.
Kuespert K  Roth A  Hauck CR 《PloS one》2011,6(1):e14609

Background

Several human-restricted Gram-negative bacteria exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) for host colonization. For example, Neisseria meningitidis engages these human receptors via outer membrane proteins of the colony opacity-associated (Opa) protein family triggering internalization into non-phagocytic cells.

Principal Findings

We report that a non-opaque strain of N. meningitidis selectively interacts with CEACAM1, but not other CEACAM family members. Using functional assays of bacterial adhesion and internalisation, microscopic analysis, and a panel of CEACAM1 deletion mutants we demonstrate that the engagement of CEACAM1 by non-opaque meningococci occurs in a manner distinct from Opa protein-mediated association. In particular, the amino-terminal domain of CEACAM1 is necessary, but not sufficient for Opa protein-independent binding, which requires multiple extracellular domains of the human receptor in a cellular context. Knock-down of CEACAM1 interferes with binding to lung epithelial cells, whereas chemical or pharmacological disruption of host protein glycosylation does not abrogate CEACAM1 recognition by non-opaque meningococci. The previously characterized meningococcal invasins NadA or Opc do not operate in a CEACAM1-dependent manner.

Conclusions

The results demonstrate a mechanistically distinct, Opa protein-independent interaction between N. meningitidis and human CEACAM1. Our functional investigations suggest the presence of a second CEACAM1-binding invasin on the meningococcal surface that associates with the protein backbone and not the carbohydrate structures of CEACAM1. The redundancy in meningococcal CEACAM1-binding factors further highlights the important role of CEACAM recognition in the biology of this human-adapted pathogen.  相似文献   

5.
Synthetic peptides from the N-domains of CEACAMs activate neutrophils.   总被引:4,自引:0,他引:4  
Four members of the carcinoembryonic antigen family, CEACAM1, CEACAM8, CEACAM6 and CEACAM3, recognized by CD66a, CD66b, CD66c and CD66d monoclonal antibodies (mAb), respectively, are expressed on human neutrophils. CD66a, CD66b, CD66c and CD66d mAb binding to neutrophils triggers an activation signal that regulates the adhesive activity of CD11/CD18, resulting in an increase in neutrophil adhesion to human umbilical vein endothelial cells. Molecular modeling of CEACAM1 using IgG and CD4 as models has been performed, and three peptides from the N-terminal domain were found to increase neutrophil adhesion to human umbilical vein endothelial cell monolayers. The peptides were 14 amino acids in length and were predicted to be present at loops and turns between beta-sheets. To better understand the amino acid sequences critical for this biological activity, in the present study we examined the other neutrophil CEACAMs and the highly homologous CEACAM, CEA. Molecular modeling of the N-terminal domains of human CEACAM8, -6, -3 and CEA was performed. Twenty peptides, each 14 amino acids in length, that were homologous to the previously reported peptides from the N-domains of CEACAM1, were synthesized and tested for their ability to alter neutrophil adhesion. Only one new peptide, from the N-domain of CEA, was found to increase neutrophil adhesion, and this peptide differed from the corresponding CEACAM1 peptide by only a single conservative amino acid substitution. Importantly, minor amino acid differences between active and inactive homologous peptides suggest regions of these peptides that are critical for biological activity. The data suggest that the regions SMPF of peptide CD66a-1, QLFG of peptide CD66a-2 and NRQIV of peptide CD66a-3 are critical for the activities of these peptides, and for the native CEACAMs.  相似文献   

6.
Neisseria gonorrhoeae colony opacity-associated (Opa) proteins bind to human carcinoembryonic antigen cellular adhesion molecules (CEACAM) found on host cells including T lymphocytes. Opa binding to CEACAM1 suppresses the activation of CD4(+) T cells in response to a variety of stimuli. In this study, we use primary human CD4(+) T cells isolated from peripheral blood to define the molecular events occurring subsequent to Opa-CEACAM1 binding. We establish that, in contrast to other cell types, T cells do not engulf N. gonorrhoeae upon CEACAM1 binding. Instead, the bacteria recruit CEACAM1 from intracellular stores and maintain it on the T cell surface. Upon TCR ligation, the co-engaged CEACAM1 becomes phosphorylated on tyrosine residues within the ITIMs apparent in the cytoplasmic domain. This allows the recruitment and subsequent activation of the src homology domain 2-containing tyrosine phosphatases SHP-1 and SHP-2 at the site of bacterial attachment, which prevents the normal tyrosine phosphorylation of the CD3zeta-chain and ZAP-70 kinase in response to TCR engagement. Combined, this dynamic response allows the bacteria to effectively harness the coinhibitory function of CEACAM1 to suppress the adaptive immune response at its earliest step.  相似文献   

7.
Neisseria meningitidis and Neisseria gonorrhoeae are globally important pathogens, which in part owe their success to their ability to successfully evade human immune responses over long periods. The phase-variable opacity-associated (Opa) adhesin proteins are a major surface component of these organisms, and are responsible for bacterial adherence and entry into host cells and interactions with the immune system. Most immune interactions are mediated via binding to members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family. These Opa variants are able to bind to different receptors of the CEACAM family on epithelial cells, neutrophils, and T and B lymphocytes, influencing the innate and adaptive immune responses. Increased epithelial cell adhesion creates the potential for prolonged infection, invasion and dissemination. Furthermore, Opa proteins may inhibit T-lymphocyte activation and proliferation, B-cell antibody production, and innate inflammatory responses by infected epithelia, in addition to conferring increased resistance to antibody-dependent, complement-mediated killing. While vaccines containing Opa proteins could induce adhesion-blocking and bactericidal antibodies, the consequence of CEACAM binding by a candidate Opa-containing vaccine requires further investigation. This review summarizes current knowledge of the immunological consequences of the interaction between meningococcal and gonococcal Opa proteins and human CEACAMs, considering the implications for pathogenesis and vaccine development.  相似文献   

8.
Little is known about the molecular bases underlying the virulence of diffusely adhering Escherichia coli (DAEC) harbouring the Afa/Dr family of adhesins. These adhesins recognize as receptors the GPI-anchored proteins CD55 (decay-accelerating factor, DAF) and CD66e (carcinoembryonic antigen, CEA). CD66e is a member of the CEA-related cell adhesion molecules (CEACAM) family, comprising seven members. We analysed the interactions of Afa/Dr DAEC with the CEACAMs using CEACAM-expressing CHO and HeLa cells. The results demonstrate that only E. coli expressing a subfamily of Afa/Dr adhesins, named here Afa/Dr-I, including Dr, F1845 and AfaE-III adhesins, bound onto CHO cells expressing CEACAM1, CEA or CEACAM6. Whereas all the Afa/Dr adhesins elicit recruitment of CD55 around adhering bacteria, only the Afa/Dr-I subfamily elicits the recruitment of CEACAM1, CEA and CEACAM6. In addition, although CEACAM3 is not recognized as a receptor by the subfamily of Afa/Dr adhesins, it is recruited around bacteria in HeLa cells. The recruited CEACAM1, CEA and CEACAM6 around adhering bacteria resist totally or in part a detergent extraction, whereas the recruited CEACAM3 does not. Finally, the results show that recognition of CEA and CEACAM6, but not CEACAM1, is accompanied by tight attachment to bacteria of cell surface microvilli-like extensions, which are elongated. Moreover, recognition of CEA is accompanied by an activation of the Rho GTPase Cdc42 and by a phosphorylation of ERM, which in turn elicit the observed cell surface microvilli-like extensions.  相似文献   

9.
Colonization of urogenital tissues by the human pathogen Neisseria gonorrhoeae is characteristically associated with purulent exudates of polymorphonuclear phagocytes (PMNs) containing apparently viable bacteria. Distinct variant forms of the phase-variable opacity-associated (Opa) outer membrane proteins mediate the non-opsonized binding and internalization of N. gonorrhoeae by human PMNs. Using overlay assays and an affinity isolation technique, we demonstrate the direct interaction between Opa52-expressing gonococci and members of the human carcinoembryonic antigen (CEA) family which express the CD66 epitope. Gonococci and recombinant Escherichia coli strains synthesizing Opa52 showed specific binding and internalization by transfected HeLa cell lines expressing the CD66 family members BGP (CD66a), NCA (CD66c), CGM1 (CD66d) and CEA (CD66e), but not that expressing CGM6 (CD66b). Bacterial strains expressing either no opacity protein or the epithelial cell invasion-associated Opa50 do not bind these CEA family members. Consistent with their different receptor specificities, Opa52-mediated interactions could be inhibited by polyclonal anti-CEA sera, while Opa50 binding was instead inhibited by heparin. Using confocal laser scanning microscopy, we observed a marked recruitment of CD66 antigen by Opa52-expressing gonococci on both the transfected cell lines and infected PMNs. These data indicate that members of the CEA family constitute the cellular receptors for the interaction with, and internalization of, N. gonorrhoeae.  相似文献   

10.
The domain(s) responsible for the specific heterophilic adhesion between two members of the carcinoembryonic antigen (CEA) family, CEACAM6 and CEACAM8, both of which with three extracellular domains, were investigated using Chinese hamster ovary (CHO) transfectants expressing chimeric antigens. Using a chimeric antigen in which the N-domain, a sole extracellular domain, of CEACAM3 was substituted with that of CEACAM6, it was shown that the N-domain of CEACAM6 alone was able to mediate specific adhesion to CEACAM8. Furthermore, the chimeric antigen was shown to bind significantly to chimeric CEA whose N-domain was substituted with that of CEACAM8, but not to unsubstituted CEA. These results demonstrate that the N-domain alone is sufficient and other domains of CEACAM6 or CEACAM8 are not required for this specific binding. We therefore propose a model of heterophilic interaction between the N-domains, which is distinct from that of CEA-CEA homophilic binding.  相似文献   

11.
The NK killing activity is regulated by activating and inhibitory NK receptors. All of the activating ligands identified so far are either viral or stress-induced proteins. The class I MHC proteins are the ligands for most of the inhibitory NK receptors. However, in the past few years, several receptors have been identified that are able to inhibit NK killing independently of class I MHC recognition. We have previously demonstrated the existence of a novel inhibitory mechanism of NK cell cytotoxicity mediated by the homophilic carcinoembryonic Ag (CEA)-related cell adhesion molecule 1 (CEACAM1) interactions. In this study, we demonstrate that CEACAM1 also interacts heterophilically with the CEA protein. Importantly, we show that these heterophilic interactions of CEA and CEACAM1 inhibit the killing by NK cells. Because CEA is expressed on a wide range of carcinomas and commonly used as tumor marker, these results represent a novel role for the CEA protein enabling the escape of tumor cells from NK-mediated killing. We further characterize, for the first time, the CEACAM1-CEA interactions. Using functional and binding assays, we demonstrate that the N domains of CEACAM1 and CEA are crucial but not sufficient for both the CEACAM1-CEACAM1 homophilic and CEACAM1-CEA heterophilic interactions. Finally, we suggest that the involvement of additional domains beside the N domain in the heterophilic and homophilic interactions is important for regulating the balance between cis and trans interactions.  相似文献   

12.
Several species of commensal Neisseriae (Cn) may colonize the human nasopharynx, but little is known about their adhesion mechanisms. We have investigated structural and functional similarities between adhesins of Cn and of Neisseria meningitidis (Nm), also a frequent colonizer of the nasopharynx. In this study, we demonstrate the expression of Opa-like proteins in nine strains of Cn. Phylogenetic analysis segregated the majority of the Cn Opa in a cluster separated from the pathogenic cluster with a few exceptions. One Opa, which located within the pathogenic cluster, was strikingly similar (74%) to an Opa of a Neisseria gonorrhoeae (Ng) strain and, like Ng, it lacked the extra Y11 or the 136DKF138 triplet insert, which are conserved among many N. meningitidis Opa proteins. Most importantly, the majority of the Cn Opa proteins were able to interact with human CEACAM1 (CD66a) molecules, previously identified as receptors for pathogenic Opa proteins. By the use of CEACAM1 N-domain mutants, we demonstrate that Cn Opa target the same region of the N-domain of the receptor as that used by Nm. Furthermore, Cn strains bound to cell-expressed human CEACAM1. In competition assays, adherent Cn strain C450, exhibiting high affinity for CEACAM1, was not displaced by a Nm isolate and vice versa . But in simultaneous incubation, Nm out-competed the Cn strain. This is the first study to demonstrate the expression of adhesins in Cn that are structurally and functionally closely related to pathogenic adhesins. The studies imply that some Cn have the potential to occupy and thus compete with the pathogens for receptors on human mucosa, their common and exclusive niche.  相似文献   

13.
The human pathogens Neisseria meningitidis and Neisseria gonorrhoeae express a family of variable outer membrane opacity-associated (Opa) proteins that recognize multiple human cell surface receptors. Most Opa proteins target the highly conserved N-terminal domain of the CD66 family of adhesion molecules, although a few also interact with heparan sulphate proteoglycans. In this study, we observed that at least two Opa proteins of a N. meningitidis strain C751 have the dual capacity to interact with both receptors. In addition, all three Opa proteins of C751 bind equally well to HeLa cells transfected with cDNA encoding the carcinoembryonic antigen [CEA (CD66e)] subgroup of the CD66 family, but show distinct tropism for CGM1- (CD66d) and NCA (CD66c)-expressing cells. Because the C751 Opa proteins make up distinct structures via the surface-exposed hypervariable domains (HV-1 and HV-2), these combinations appear to be involved in tropism for the distinct CD66 subgroups. To define the determinants of receptor recognition, we used mutant proteins of biliary glycoprotein [BGP (CD66a)] carrying substitutions at several predicted exposed sites in the N-domain and compared their interactions with several Opa proteins of both N. meningitidis and N. gonorrhoeae. The observations applied to the molecular model of the BGP N-domain that we constructed show that the binding of all Opa proteins tested occurs at the non-glycosylated (CFG) face of the molecule and, in general, appears to require Tyr-34 and Ile-91. Further, efficient interaction of distinct Opa proteins depends on different non-adjacent amino acids. In the three-dimensional model, these residues lie in close proximity to Tyr-34 and Ile-91 at the CFG face, making continuous binding domains (adhesiotopes). The epitope of the monoclonal antibody YTH71.3 that inhibits Opa/CD66 interactions was also identified within the Opa adhesiotopes on the N-domain. These studies define the molecular basis that directs the Opa specificity for the CD66 family and the rationale for tropism of the Opa proteins for the CD66 subgroups.  相似文献   

14.
Opa adhesins of pathogenic Neisseria species target four members of the human carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. CEACAM receptors mediate opsonization-independent phagocytosis of Neisseria gonorrhoeae by human granulocytes and each receptor individually can mediate gonococcal invasion of epithelial cells. We show here that gonococcal internalization occurs by distinct mechanisms depending on the CEACAM receptor expressed. For the invasion of epithelial cell lines via CEACAM1 and CEACAM6, a pathogen-directed reorganization of the actin cytoskeleton is not required. In marked contrast, ligation of CEACAM3 triggers a dramatic but localized reorganization of the host cell surface leading to highly efficient engulfment of bacteria in a process regulated by the small GTPases Rac1 and Cdc42, but not Rho. Two tyrosine residues of a cytoplasmic immune receptor tyrosine-based activating motif of CEACAM3 are essential for the induction of phagocytic actin structures and subsequent gonococcal internalization. The granulocyte-specific CEACAM3 receptor has properties of a single chain phagocytic receptor and may thus contribute to innate immunity by the elimination of Neisseria and other CEACAM-binding pathogens that colonize human mucosal surfaces.  相似文献   

15.
The multifunctional carcinoembryonic Ag cell adhesion molecule (CEACAM)1 protein has recently become the focus of intense immunological research. We have previously shown that the CEACAM1 homophilic interactions inhibit the killing activity of NK cells. This novel inhibitory mechanism plays a key role in melanoma immune evasion, inhibition of decidual immune response, and controlling NK autoreactivity in TAP2-deficient patients. These roles are mediated mainly by homophilic interactions, which are mediated through the N-domain of the CEACAM1. The N-domain of the various members of the CEACAM family shares a high degree of similarity. However, it is still unclear which of the CEACAM family members is able to interact with CEACAM1 and what are the amino acid residues that control this interaction. In this study we demonstrate that CEACAM1 interacts with CEACAM5, but not with CEACAM6. Importantly, we provide the molecular basis for CEACAM1 recognition of various CEACAM family members. Sequence alignment reveals a dichotomy among the CEACAM family members: both CEACAM1 and CEACAM5 contain the R and Q residues in positions 43 and 44, respectively, whereas CEACAM3 and CEACAM6 contain the S and L residues, respectively. Mutational analysis revealed that both 43R and 44Q residues are necessary for CEACAM1 interactions. Implications for differential expression of CEACAM family members in tumors are discussed.  相似文献   

16.
Several gram-negative human pathogens recognize members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family. Pathogenic Neisseriae employ distinct isoforms of the colony opacity-associated proteins (Opa(CEA) proteins) to bind to the amino-terminal domains of CEACAMs. Here we present a novel approach to rapidly determine the CEACAM-binding properties of single bacteria. Expression of the isolated amino-terminal domains of various CEACAMs in eukaryotic cells yields soluble probes that selectively recognize Opa(CEA)-expressing bacteria in a pull-down assay format. Furthermore, by expressing soluble CEACAMs as fusions to green-fluorescent protein (CEACAM-N-GFP), CEACAM-binding bacteria can be decorated with a fluorescent label and analysed by flow cytometry allowing the specific detection of receptor binding events on the level of single bacteria. Besides its potential for rapid and quantitative analysis of pathogen-receptor interactions, this novel approach allows the detection of receptor recognition in heterogeneous bacterial populations and might represent a valuable tool for profiling the host binding capabilities of various microorganisms.  相似文献   

17.
18.
Opa protein-expressing pathogenic neisseriae interact with CD66a-transfected COS (African green monkey kidney) and CHO (Chinese hamster ovary) cells. CD66a (BGP) is a member of carcinoembryonic antigen (CEA, CD66) family. The interactions occur at the N-terminal domain of CD66a, a region that is highly conserved between members of the CEA subgroup of the CD66 family. In this study, we have investigated the roles of CD66 expressed on human epithelial cells and polymorphonuclear phagocytes (PMNs) in adhesion mediated via Opa proteins. Using human colonic (HT29) and lung (A549) epithelial cell lines known to express CD66 molecules, we show that these receptors are used by meningococci. A monoclonal antibody, YTH71.3, against the N-terminal domain of CD66, but not 3B10 directed against domains, A1/B1, inhibited meningococcal adhesion to host cells. When acapsulate bacteria expressing Opa proteins were used, large numbers of bacteria adhered to HT29 and A549 cells. In addition, both CD66a-transfected CHO cells and human epithelial cells were invaded by Opa-expressing meningococci, suggesting that epithelial cell invasion may occur via Opa–CD66 interactions. In previous studies we have shown that serogroup A strain C751 expresses three Opa proteins, all of which mediate non-opsonic interactions with neutrophils. We have examined the mechanisms of these interactions using antibodies and soluble chimeric receptors. The results indicate that the nature of their interactions with purified CD66a molecules and with CD66 on neutrophils is alike and that these interactions occur at the N-terminal domain of CD66. Thus, the Opa family of neisserial ligands may interact with several members of the CD66 family via their largely conserved N-terminal domains.  相似文献   

19.
Escherichia coli expressing the Dr family of adhesins adheres to epithelial cells by binding to decay-accelerating factor (DAF) and carcinoembryonic antigen (CEA)-related cell surface proteins. The attachment of bacteria expressing Dr adhesins to DAF induces clustering of DAF around bacterial cells and also recruitment of CEA-related cell adhesion molecules. CEA, CEACAM1, and CEACAM6 have been shown to serve as receptors for some Dr adhesins (AfaE-I, AfaE-III, DraE, and DaaE). We demonstrate that AfaE-I, AfaE-V, DraE, and DaaE adhesins bind to the N-domain of CEA. To identify the residues involved in the N-CEA/DraE interaction, we performed SPR binding analyses of naturally occurring variants and a number of randomly generated mutants in DraE and N-CEA. Additionally, we used chemical shift mapping by NMR to determine the surface of DraE involved in N-CEA binding. These results show a distinct CEA binding site located primarily in the A, B, E, and D strands of the Dr adhesin. Interestingly, this site is located opposite to the beta-sheet encompassing the previously determined binding site for DAF, which implies that the adhesin can bind simultaneously to both receptors on the epithelial cell surface. The recognition of CEACAMs from a highly diverse DrCEA subfamily of Dr adhesins indicates that interaction with these receptors plays an important role in niche adaptation of E. coli strains expressing Dr adhesins.  相似文献   

20.
Zhou GQ  Zhang Y  Hammarström S 《Gene》2001,264(1):105-112
Carcinoembryonic antigen (CEA) is a tumor marker of wide clinical use though its function remains unknown. The CEA counterpart and some related macromolecules cannot be demonstrated in mice, thus prohibiting studies of CEA function by gene disruption strategies. In an attempt to find a relevant animal model for functional studies of CEA we have investigated the occurrence of CEA subgroup members in baboon and African green monkey at the genomic and mRNA levels. The investigation was focused on the characteristic immunoglobulin-variable region-like (IgV-like) N-terminal domain of the family members. Based on N-domain sequences 3 and 4 different CEA subgroup genes, respectively, were identified. One sequence in each monkey species corresponded to human CEACAM8, while it was not possible to assign an obvious human counterpart for the other N-domain sequences. However, studies of cDNAs from African green monkey COS-1 cells identified one of the sequences as CEACAM1. Expression of CEACAM1 mRNA and protein was upregulated by IFNgamma as has previously been demonstrated for human CEACAM1. Presence of GPI-linked CEA subgroup members in African green monkey was suggested by sequencing. Both monkey species would thus seem suitable for functional studies of selected CEA subgroup members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号