首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double-stranded (ds) RNA, which accumulates during viral replication, activates the antiviral response of infected cells. In this study, we have identified a requirement for extracellular signal-regulated kinase (ERK) in the regulation of interleukin 1 (IL-1) expression by macrophages in response to dsRNA and viral infection. Treatment of RAW 264.7 cells or mouse macrophages with dsRNA stimulates ERK phosphorylation that is first apparent following a 15-min incubation and persists for up to 60 min, the accumulation of iNOS and IL-1 mRNA following a 6-h incubation, and the expression of iNOS and IL-1 at the protein level following a 24-h incubation. Inhibitors of ERK activation prevent dsRNA-induced ERK phosphorylation and IL-1 expression by macrophages. The regulation of macrophage activation by ERK appears to be selective for IL-1, as ERK inhibition does not attenuate dsRNA-induced iNOS expression by macrophages. dsRNA stimulates both ERK activation and IL-1 expression by macrophages isolated from dsRNA-dependent protein kinase (PKR)-deficient mice, indicating that PKR does not participate in this antiviral response. These findings support a novel PKR-independent role for ERK in the regulation of the antiviral response of IL-1 expression and release by macrophages.  相似文献   

2.
3.
In this study the regulation of macrophage expression of cyclooxygenase-2 (COX-2) in response to dsRNA and virus infection was examined. Treatment of RAW 264.7 macrophages with dsRNA results in COX-2 mRNA accumulation and protein expression and the production of PGE(2). Similar to dsRNA, encephalomyocarditis virus (EMCV) infection of RAW 264.7 cells stimulates COX-2 expression and PGE(2) accumulation. The dsRNA-dependent protein kinase (PKR), which has been shown to participate in the regulation of gene expression in response to dsRNA and virus infection, does not appear to participate in the regulation of COX-2 expression by macrophages. Expression of dominant negative mutants of PKR in RAW 264.7 cells fails to attenuate dsRNA- and EMCV-induced COX-2 expression or PGE(2) production. Furthermore, dsRNA and EMCV stimulate COX-2 expression and PGE(2) accumulation to similar levels in macrophages isolated from wild-type and PKR-deficient mice. Recently, a novel PKR-independent role for the calcium-independent phospholipase A(2) (iPLA(2)) in the regulation of inducible NO synthase expression by macrophages in response to virus infection has been identified. The selective iPLA(2) suicide substrate inhibitor bromoenol lactone prevents dsRNA- and EMCV-stimulated inducible NO synthase expression; however, bromoenol lactone does not attenuate dsRNA- or EMCV-induced COX-2 expression by macrophages. In contrast, inhibition of NF-kappaB activation prevents dsRNA-stimulated COX-2 expression and PGE(2) accumulation by macrophages. These findings indicate that virus infection and treatment with dsRNA stimulate COX-2 expression by a mechanism that requires the activation of NF-kappaB and that is independent of PKR or iPLA(2) activation.  相似文献   

4.
5.
Environmental factors, such as viral infection, have been implicated as potential triggering events leading to the initial destruction of pancreatic beta cells during the development of autoimmune diabetes. Double-stranded RNA (dsRNA), the active component of a viral infection that stimulates antiviral responses in infected cells, has been shown in combination with interferon-gamma (IFN-gamma) to stimulate inducible nitric oxide synthase (iNOS) expression and nitric oxide production and to inhibit beta cell function. Interferon regulatory factor-1 (IRF-1), the activation of which is induced by dsRNA, viral infection, and IFN-gamma, regulates the expression of many antiviral proteins, including PKR, type I IFN, and iNOS. In this study, we show that IRF-1 is not required for dsRNA + IFN-gamma-stimulated iNOS expression and nitric oxide production by mouse islets. In contrast to islets, dsRNA + IFN-gamma fails to induce iNOS expression or nitric oxide production by macrophages isolated from IRF-1(-/-) mice; however, dsRNA + IFN-gamma induces similar levels of IL-1 release by macrophages isolated from both IRF-1(-/-) and IRF-1(+/+) mice. Importantly, we show that dsRNA- or dsRNA + IFN-gamma-stimulated IRF-1 expression by mouse islets and peritoneal macrophages is independent of PKR. These results indicate that IRF-1 is required for dsRNA + IFN-gamma-induced iNOS expression and nitric oxide production by mouse peritoneal macrophages but not by mouse islets. These findings suggest that dsRNA + IFN-gamma stimulates iNOS expression by two distinct PKR-independent mechanisms; one that is IRF-1-dependent in macrophages and another that is IRF-1-independent in islets.  相似文献   

6.
One of the products of a calcium-independent phospholipase A2 (iPLA2) attack of plasmenylcholine, lysoplasmenylcholine, has previously been shown to activate cAMP-dependent protein kinase (PKA). Because endothelial cells respond to some agonists in part by the activation of iPLA2, the present study was designed to determine whether double-stranded RNA (dsRNA), the primary activator of the antiviral response in endothelial cells, elicits cAMP response element binding protein (CREB) phosphorylation through a mechanism mediated by iPLA2. dsRNA stimulated CREB phosphorylation in bovine pulmonary artery endothelial cells that was inhibited by the iPLA2 inhibitor, bromoenol lactone, and the PKA inhibitor, H-89. Additionally, the product of iPLA2 hydrolysis of plasmenylcholine and lysoplasmenylcholine elicited CREB phosphorylation in bovine pulmonary endothelial cells. Taken together, the present studies suggest that dsRNA as well as other agonists of endothelial cells elicit signaling mechanisms that include in part CREB phosphorylation mediated by iPLA2.  相似文献   

7.
8.
In this study, we provide evidence that the double-stranded RNA-dependent protein kinase (PKR) is not required for virus-induced expression of inducible nitric oxide synthase (iNOS) or the activation of specific signaling pathways in macrophages. The infection of RAW264.7 cells with encephalomyocarditis virus (EMCV) induces iNOS expression and nitric oxide production, which are unaffected by a dominant-negative mutant of PKR. EMCV infection also activates the mitogen-activated protein kinase, cyclic AMP response element binding protein, and nuclear factor kappaB (NF-kappaB) signaling cascades at 15 to 30 min postinfection in PKR+/+ and PKR-/- macrophages. Activation of these signaling cascades does not temporally correlate with PKR activity or the accumulation of EMCV RNA, suggesting that an interaction between a structural component of the virion and the cell surface may activate macrophages. Consistent with this hypothesis, empty EMCV capsids induced comparable levels of iNOS expression, nitrite production, and activation of these signaling cascades to those induced by intact virions. These findings support the hypothesis that virion-host cell interactions are primary mediators of the PKR-independent activation of signaling pathways that participate in the macrophage antiviral response of inflammatory gene expression.  相似文献   

9.
10.
Epithelial cells represent the initial site of respiratory viral entry and the first line of defense against such infections. This early antiviral response is characterized by an increase in the production of proinflammatory cytokines such as TNF-alpha and IL-1 beta. dsRNA, which is a common factor present during the life cycle of both DNA and RNA viruses, is known to induce TNF-alpha and IL-1 beta in a variety of cells. In this work we provide data showing that dsRNA treatment induces TNF-alpha and IL-1 beta in human lung epithelial cells via two different mechanisms. Our data show that dsRNA activation of dsRNA-activated protein kinase (PKR) is associated with induction of TNF-alpha but not IL-1 beta expression. An inhibitor of PKR activation blocked the dsRNA-induced elevations in TNF-alpha but not IL-1 beta mRNA in epithelial cells. Data obtained from infection of epithelial cells with a vaccinia virus lacking the PKR inhibitory polypeptide, E3L, revealed that PKR activation was essential for TNF-alpha but not for IL-1 beta expression. In this report, we provide experimental support for the differential regulation of proinflammatory cytokine expression by dsRNA and viral infections in human airway epithelial cells.  相似文献   

11.
Viral infection is one environmental factor that may initiate beta-cell damage during the development of autoimmune diabetes. Formed during viral replication, double-stranded RNA (dsRNA) activates the antiviral response in infected cells. In combination, synthetic dsRNA (polyinosinic-polycytidylic acid, poly(I-C)) and interferon (IFN)-gamma stimulate inducible nitric-oxide synthase (iNOS) expression, inhibit insulin secretion, and induce islet degeneration. Interleukin-1 (IL-1) appears to mediate dsRNA + IFN-gamma-induced islet damage in a nitric oxide-dependent manner, as the interleukin-1 receptor antagonist protein prevents dsRNA + IFN-gamma-induced iNOS expression, inhibition of insulin secretion, and islet degeneration. IL-1beta is synthesized as an inactive precursor protein that requires cleavage by the IL-1beta-converting enzyme (ICE) for activation. dsRNA and IFN-gamma stimulate IL-1beta expression and ICE activation in primary beta-cells, respectively. Selective ICE inhibition attenuates dsRNA + IFN-gamma-induced iNOS expression by primary beta-cells. In addition, poly(I-C) + IFN-gamma-induced iNOS expression and nitric oxide production by human islets are prevented by interleukin-1 receptor antagonist protein, indicating that human islets respond to dsRNA and IFN-gamma in a manner similar to rat islets. These studies provide biochemical evidence for a novel mechanism by which viral infection may initiate beta-cell damage during the development of autoimmune diabetes. The viral replicative intermediate dsRNA stimulates beta-cell production of pro-IL-1beta, and following cleavage to its mature form by IFN-gamma-activated ICE, IL-1 then initiates beta-cell damage in a nitric oxide-dependent fashion.  相似文献   

12.
The interferon (IFN)-inducible double-stranded-RNA (dsRNA)-activated serine-threonine protein kinase (PKR) is a major mediator of the antiviral and antiproliferative activities of IFNs. PKR has been implicated in different stress-induced signaling pathways including dsRNA signaling to nuclear factor kappa B (NF-kappaB). The mechanism by which PKR mediates activation of NF-kappaB is unknown. Here we show that in response to poly(rI). poly(rC) (pIC), PKR activates IkappaB kinase (IKK), leading to the degradation of the inhibitors IkappaBalpha and IkappaBbeta and the concomitant release of NF-kappaB. The results of kinetic studies revealed that pIC induced a slow and prolonged activation of IKK, which was preceded by PKR activation. In PKR null cell lines, pIC failed to stimulate IKK activity compared to cells from an isogenic background wild type for PKR in accord with the inability of PKR null cells to induce NF-kappaB in response to pIC. Moreover, PKR was required to establish a sustained response to tumor necrosis factor alpha (TNF-alpha) and to potentiate activation of NF-kappaB by cotreatment with TNF-alpha and IFN-gamma. By coimmunoprecipitation, PKR was shown to be physically associated with the IKK complex. Transient expression of a dominant negative mutant of IKKbeta or the NF-kappaB-inducing kinase (NIK) inhibited pIC-induced gene expression from an NF-kappaB-dependent reporter construct. Taken together, these results demonstrate that PKR-dependent dsRNA induction of NF-kappaB is mediated by NIK and IKK activation.  相似文献   

13.
Mice deficient in regulator of G-protein signaling-2 (RGS2) have severe hypertension, and RGS2 genetic variations occur in hypertensive humans. A potentially important negative feedback loop in blood pressure homeostasis is that angiotensin II (Ang II) increases vascular smooth muscle cell (VSMC) RGS2 expression. We reported that Group VIA phospholipase A(2) (iPLA(2)β) is required for this response (Xie, Z., Gong, M. C., Su, W., Turk, J., and Guo, Z. (2007) J. Biol. Chem. 282, 25278-25289), but the specific molecular causes and consequences of iPLA(2)β activation are not known. Here we demonstrate that both protein kinases C (PKC) and A (PKA) participate in Ang II-induced VSMC RGS2 mRNA up-regulation, and that actions of PKC and PKA precede and follow iPLA(2)β activation, respectively. Moreover, we identified a conserved cAMP-response element (CRE) in the murine RGS2 promoter that is critical for cAMP-response element-binding protein (CREB) binding and RGS2 promoter activation. Forskolin-stimulated RGS2 mRNA up-regulation is inhibited by CREB sequestration or specific disruption of the CREB-RGS2 promoter interaction, and Ang II-induced CREB phosphorylation and nuclear localization are blocked by iPLA(2)β pharmacologic inhibition or genetic ablation. Ang II-induced intracellular cyclic AMP accumulation precedes CREB phosphorylation and is diminished by inhibiting iPLA(2), cyclooxygenase, or lipoxygenase. Moreover, three single nucleotide polymorphisms identified in hypertensive patients are located in the human RGS2 promoter CREB binding site. Point mutations corresponding to these single nucleotide polymorphisms interfere with stimulation of human RGS2 promoter activity by forskolin. Our studies thus delineate a negative feedback loop to attenuate Ang II signaling in VSMC with potential importance in blood pressure homeostasis and the pathogenesis of human essential hypertension.  相似文献   

14.
15.
16.
Reactive molecules O(-)(2), H(2)O(2), and nitrogen monoxide (NO) are produced from macrophages following exposure to lipopolysaccharide (LPS) and involved in cellular signaling for gene expression. Experiments were carried out to determine whether these molecules regulate inducible nitric oxide synthase (iNOS) gene expression in RAW264.7 macrophages exposed to LPS. NO production was inhibited by the antioxidative enzymes catalase, horseradish peroxidase, and myeloperoxidase but not by superoxide dismutase (SOD). In contrast, the NO-producing activity of LPS-stimulated RAW264.7 cells was enhanced by the NO scavengers hemoglobin (Hb) and myoglobin. The antioxidant enzymes decreased levels of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells, whereas the NOS inhibitor N(G)-monomethyl-L-arginine as well as Hb increased the level of iNOS protein but not mRNA, indicating that NO inhibits iNOS protein expression. NF-kappa B was activated in LPS-stimulated RAW264.7 cells and the activation was significantly inhibited by antioxidant enzymes, but not by Hb. Similar results were obtained using LPS-stimulated rodent peritoneal macrophages. Extracellular O(-)(2) generation by LPS-stimulated macrophages was suppressed by SOD, but not by antioxidative enzymes, while accumulation of intracellular reactive oxygen species was inhibited by antioxidative enzymes, but not by SOD. Exogenous H(2)O(2) induced NF-kappa B activation in macrophages, which was inhibited by catalase and pyrroline dithiocarbamate (PDTC). H(2)O(2) enhanced iNOS expression and NO production in peritoneal macrophages when added with interferon-gamma, and the effect of H(2)O(2) was inhibited by catalase and PDTC. These findings suggest that H(2)O(2) production from LPS-stimulated macrophages participates in the upregulation of iNOS expression via NF-kappa B activation and that NO is a negative feedback inhibitor of iNOS protein expression.  相似文献   

17.
TRAF family proteins link PKR with NF-kappa B activation   总被引:1,自引:0,他引:1       下载免费PDF全文
The double-stranded RNA (dsRNA)-dependent protein kinase PKR activates NF-kappa B via the I kappa B kinase (IKK) complex, but little is known about additional molecules that may be involved in this pathway. Analysis of the PKR sequence enabled us to identify two putative TRAF-interacting motifs. The viability of such an interaction was further suggested by computer modeling. Here, we present evidence of the colocalization and physical interaction between PKR and TRAF family proteins in vivo, as shown by immunoprecipitation and confocal microscopy experiments. This interaction is induced upon PKR dimerization. Most importantly, we show that the binding between PKR and TRAFs is functionally relevant, as observed by the absence of NF-kappa B activity upon PKR expression in cells genetically deficient in TRAF2 and TRAF5 or after expression of TRAF dominant negative molecules. On the basis of sequence information and mutational and computer docking analyses, we favored a TRAF-PKR interaction model in which the C-terminal domain of TRAF binds to a predicted TRAF interaction motif present in the PKR kinase domain. Altogether, our data suggest that TRAF family proteins are key components located downstream of PKR that have an important role in mediating activation of NF-kappa B by the dsRNA-dependent protein kinase.  相似文献   

18.
19.
The effect of secretory group II phospholipase A2 (sPLA2) on the expression of the inducible NO synthase (iNOS) and the production of NO by macrophages was investigated. sPLA2 by itself barely stimulated nitrite production and iNOS expression in Raw264.7 cells. However, in combination with LPS, the effects were synergistic. This potentiation was shown for sPLA2 enzymes from sPLA2-transfected stable cells or for purified sPLA2 from human synovial fluid. The effect of PLA2 on iNOS induction appears to be specific for the secretory type of PLA2. LPS-stimulated activation of iNOS was inhibited by the well-known selective inhibitors of sPLA2 such as 12-epi-scalaradial and p-bromophenacyl bromide. In contrast, the cytosolic PLA2-specific inhibitors methyl arachidonyl fluorophosphate and arachidonyltrifluoromethyl ketone did not affect LPS-induced nitrite production and iNOS expression. Moreover, when we transfected cDNA-encoding type II sPLA2, we observed that the sPLA2-transfected cells produced two times more nitrites than the empty vector or cytosolic PLA2-transfected cells. The sPLA2-potentiated iNOS expression was associated with the activation of NF-kappa B. We found that the NF-kappa B inhibitor pyrrolidinedithiocarbamate prevented nitrite production, iNOS induction, and mRNA accumulation by sPLA2 plus LPS in Raw264.7 cells. Furthermore, EMSA analysis of the activation of the NF-kappa B involved in iNOS induction demonstrated that pyrrolidinedithiocarbamate prevented the NF-kappa B binding by sPLA2 plus LPS. Our findings indicated that sPLA2, in the presence of LPS, is a potent activator of macrophages. It stimulates iNOS expression and nitrite production by a mechanism that requires the activation of NF-kappa B.  相似文献   

20.
Viral infection has been implicated as a triggering event that may initiate beta-cell damage during the development of autoimmune diabetes. In this study, the effects of the viral replicative intermediate, double-stranded RNA (dsRNA) (in the form of synthetic polyinosinic-polycytidylic acid (poly IC)) on islet expression of inducible nitric oxide synthase (iNOS), production of nitric oxide, and islet function and viability were investigated. Treatment of rat islets with poly(IC) + interferon-gamma (IFN-gamma) stimulates the time- and concentration-dependent expression of iNOS and production of nitrite by rat islets. iNOS expression and nitrite production by rat islets in response to poly(IC) + IFN-gamma correlate with an inhibition of insulin secretion and islet degeneration, effects that are prevented by the iNOS inhibitor aminoguanidine (AG). We have previously shown that poly(IC) + IFN-gamma activates resident macrophages, stimulating iNOS expression, nitric oxide production and interleukin-1 (IL-1) release. In addition, in response to tumor necrosis factor-alpha (TNF-alpha) + lipopolysaccharide, activated resident macrophages mediate beta-cell damage via intraislet IL-1 release followed by IL-1-induced iNOS expression by beta-cells. The inhibitory and destructive effects of poly(IC) + IFN-gamma, however, do not appear to require resident macrophages. Treatment of macrophage-depleted rat islets for 40 h with poly(IC) + IFN-gamma results in the expression of iNOS, production of nitrite, and inhibition of insulin secretion. The destructive effects of dsRNA + IFN-gamma on islets appear to be mediated by a direct interaction with beta-cells. Poly IC + IFN-gamma stimulates iNOS expression and inhibits insulin secretion by primary beta-cells purified by fluorescence-activated cell sorting. In addition, AG prevents the inhibitory effects of poly(IC) + IFN-gamma on glucose-stimulated insulin secretion by beta-cells. These results indicate that dsRNA + IFN-gamma interacts directly with beta-cells stimulating iNOS expression and inhibiting insulin secretion in a nitric oxide-dependent manner. These findings provide biochemical evidence for a novel mechanism by which viral infection may directly mediate the initial destruction of beta-cells during the development of autoimmune diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号