首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rate of treadmilling of actin filaments in vitro   总被引:2,自引:0,他引:2  
Actin filaments capped at the barbed ends were formed by polymerizing monomeric actin onto a gelsolin-actin complex. The rate of depolymerization and polymerization of the pointed ends was determined by diluting gelsolin-capped actin filaments into various concentrations of monomeric actin. Under the conditions of the experiments (100 mM-KCl, 2 mM-MgCl2 at 37 degrees C) the rate constant of dissociation of subunits both from a shortening and a lengthening filament was found to be 0.21 s-1. As the rate of dissociation of subunits from the slow pointed end determines the rate of treadmilling, it is concluded that actin filaments treadmill with a rate of about 2 micron/h.  相似文献   

2.
We present a physical model that describes the active localization of actin-regulating proteins inside stereocilia during steady-state conditions. The mechanism of localization is through the interplay of free diffusion and directed motion, which is driven by coupling to the treadmilling actin filaments and to myosin motors that move along the actin filaments. The resulting localization of both the molecular motors and their cargo is calculated, and is found to have an exponential (or steeper) profile. This localization can be at the base (driven by actin retrograde flow and minus-end myosin motors), or at the stereocilia tip (driven by plus-end myosin motors). The localization of proteins that influence the actin depolymerization and polymerization rates allow us to describe the narrow shape of the stereocilia base, and the observed increase of the actin polymerization rate with the stereocilia height.  相似文献   

3.
4.
5.
6.
7.
Galbraith  James A.  Gallant  Paul E. 《Brain Cell Biology》2000,29(11-12):889-911
Brain Cell Biology - Axonal transport is responsible for supplying the axonal processes with proteins that are synthesized in the cell body. Among the proteins that are moved by this mechanism are...  相似文献   

8.
The structural and functional resemblance between the bacterial cell-division protein FtsZ and eukaryotic tubulin was the first indication that the eukaryotic cytoskeleton may have a prokaryotic origin. The bacterial ancestry is made even more obvious by the findings that the bacterial cell-shape-determining proteins Mreb and Mbl form large spirals inside non-spherical cells, and that MreB polymerises in vitro into protofilaments very similar to actin. Recent advances in research on two proteins involved in prokaryotic cytokinesis and cell shape determination that have similar properties to the key components of the eukaryotic cytoskeleton are discussed.  相似文献   

9.
10.
Actin filaments are polar structures that exhibit a fast growing plus end and a slow growing minus end. According to their organization in cells, in parallel or antiparallel arrays, they can serve, respectively, in protrusions or in contractions. The determination of actin filament polarity in subcellular compartments is therefore required to establish their local function. Myosin binding has previously been the sole method of polarity determination. Here, we report the first direct determination of actin filament polarity in the cell without myosin binding. Negatively stained cytoskeletons of lamellipodia were analyzed by adapting electron tomography and a single particle analysis for filamentous complexes. The results of the stained cytoskeletons confirmed that all actin filament ends facing the cell membrane were the barbed ends. In general, this approach should be applicable to the analysis of actin polarity in tomograms of the actin cytoskeleton.  相似文献   

11.
In many species, intracellular mRNA localization is linked to cell polarity. In many cases however, mRNAs become localized as a result of a pre-existing cell-polarity, and they do not modify it. Remarkably, in the case beta actin mRNA in vertebrate, it has been shown that the transport and localization of this RNA is required for the establishment and maintenance of cell polarity. This occurs in fibroblasts, but, very interestingly, in immature neurons as well. This review will describe the functions and mechanisms of actin mRNA localization.  相似文献   

12.
Here is presented a short survey of the main aspects of the involvement of nucleotide hydrolysis in the polymerization of actin and microtubules: 1) XTP hydrolysis is not tightly coupled to the polymerization process; XTP hydrolysis and phosphate release generate an unstable XDP-polymer which is maintained at steady state, in the presence of XTP, by terminal XTP-subunits; this feature can generate patterns of phase transitions of the polymer between stable and unstable conformations; 2) Interactions between subunits are involved in the mechanism of XTP hydrolysis; 3) XTP cleavage on the polymer is followed by the slow release of Pi; the structural and thermodynamic characteristics of the transient XDP-Pi-polymer may play a crucial role in the regulation of the dynamics of microtubules and actin filaments.  相似文献   

13.
Dorsal closure is a morphogenetic process involving the coordinated convergence of two epithelial sheets to enclose the Drosophila melanogaster embryo. Specialized populations of cells at the edges of each epithelial sheet, the dorsal-most epidermal cells, emit actin-based processes that are essential for the proper enclosure of the embryo. Here we show that actin dynamics at the leading edge is preceded by a planar polarization of the dorsal-most epidermal cells associated with a reorganization of the cytoskeleton. An important consequence of this planar polarization is the formation of actin-nucleating centres at the leading edge, which are important in the dynamics of actin. We show that Wingless (Wg) signalling and Jun amino-terminal kinase (JNK) signalling have overlapping but different roles in these events.  相似文献   

14.
We have developed an improved method for visualizing actin filament polarity in thin sections. Myosin subfragment-1 (S-1)-decorated actin filaments display a dramatically enhanced arrowhead configuration when fixed in a medium which contains 0.2 % tannic acid. With the exception of brush borders from intestinal epithelial cells, the arrowhead periodicity of decorated filaments in a variety of nonmuscle cells is similar to that in isolated myofibrils. The periodicity of decorated filaments in brush borders is significantly smaller. Actin filaments which attach to membranes display a clear, uniform polarity, with the S-1 arrowheads pointing away from the plasma membrane, while those which comprise the stress fibers of myoblasts and CHO cells have antiparallel polarities. These observations are consistent with a sliding filament mechanism of cell motility.  相似文献   

15.
The leading edge (approximately 1 microgram) of lamellipodia in Xenopus laevis keratocytes and fibroblasts was shown to have an extensively branched organization of actin filaments, which we term the dendritic brush. Pointed ends of individual filaments were located at Y-junctions, where the Arp2/3 complex was also localized, suggesting a role of the Arp2/3 complex in branch formation. Differential depolymerization experiments suggested that the Arp2/3 complex also provided protection of pointed ends from depolymerization. Actin depolymerizing factor (ADF)/cofilin was excluded from the distal 0.4 micrometer++ of the lamellipodial network of keratocytes and in fibroblasts it was located within the depolymerization-resistant zone. These results suggest that ADF/cofilin, per se, is not sufficient for actin brush depolymerization and a regulatory step is required. Our evidence supports a dendritic nucleation model (Mullins, R.D., J.A. Heuser, and T.D. Pollard. 1998. Proc. Natl. Acad. Sci. USA. 95:6181-6186) for lamellipodial protrusion, which involves treadmilling of a branched actin array instead of treadmilling of individual filaments. In this model, Arp2/3 complex and ADF/cofilin have antagonistic activities. Arp2/3 complex is responsible for integration of nascent actin filaments into the actin network at the cell front and stabilizing pointed ends from depolymerization, while ADF/cofilin promotes filament disassembly at the rear of the brush, presumably by pointed end depolymerization after dissociation of the Arp2/3 complex.  相似文献   

16.
Correlation between structural polarity and polar assembly of brain tubulin   总被引:1,自引:0,他引:1  
The structural polarity of tubulin protofilaments is shown by image processing of tubulin hoops. There is a strict relationship between the shapes of protofilaments and their direction of growth.  相似文献   

17.
Using commercial monoclonal antibodies against actin and tubulin (alpha and beta), the respective antigens were localized on semithin and ultrathin sections of the rat testis. Tubulin immunofluorescence was found in the socalled manchette surrounding the heads of the maturating spermatids as well as the sperm tail. The distribution pattern varied with sperm development. Modified Sertoli cells found at the transition between the seminiferous tubules and the rete testis displayed much filamentous tubulin-reactive material. The immunofluorescence findings could be confirmed at the ultrastructural level using the indirect immunogold method. Actin immunofluorescence was demonstrated in vascular smooth muscle cells, interstitial macrophages and - most intensely - in peritubular cells. Inside the seminiferous tubules the Sertoli cell junctions and the ectoplasmic specializations of the Sertoli cells that follow the outer contour of spermatid heads displayed distinct actin immunofluorescence. In addition to the locations mentioned, actin-like immunoreactivity was visualized at the ultrastructural level in the chromatoid body and the subacrosomal space of spermatids as well as on the outer dense fibers of the sperm tail. Immunoblotting experiments with actin antibodies showed that in extracts from testicular spermatozoa, intact or fragmented into heads and tails, from isolated Sertoli cells grown in vitro, and from testis tissue in addition to authentic actin a protein was present in sperm tail extracts that strongly bound the actin antibody. This protein may be an actin-related protein and may be responsible for the actin-like immunoreactivity of the outer dense fibers of the sperm tail.  相似文献   

18.
Nascent actin and tubulin molecules undergo a series of complex interactions with chaperones and are thereby guided to their native conformation. These cytoskeletal proteins have the initial part of the pathway in common: both interact with prefoldin and with the cytosolic chaperonin containing tailless complex polypeptide 1. Little is understood with regard to how these chaperones and, in particular, prefoldin recognize the non-native forms of these target proteins. Using mutagenesis, we provide evidence that beta-actin and alpha-tubulin each have two prefoldin interaction sites. The most amino-terminally located site of both proteins shows striking sequence similarity, although these proteins are nonhomologous. Very similar motifs are present in beta- and gamma-tubulin and in the newly identified prefoldin target protein actin-related protein 1. Actin-related proteins 2 and 3 have related motifs, but these have altered charge properties. The latter two proteins do not bind prefoldin, although we identify them here as target proteins for the cytosolic chaperonin. Actin fragments containing the two prefoldin interaction regions compete efficiently with actin for prefoldin binding. In addition, they also compete with tubulins, suggesting that these target proteins contact similar prefoldin subunits.  相似文献   

19.
20.
Summary In order to define cytoskeletal domains of the mammalian photoreceptor, actin and tubulin were localized in adult retinae of mouse and human. For light-microscopic localization, actin was labeled using fluorescent phalloidin or monoclonal antibodies against actin, and tubulin was labeled using monoclonal antibodies against alpha- and beta-tubulin in an immunocytochemical method. Actin and tubulin were also localized by ultrastructural immunocytochemistry in the mouse. Filamentous actin was present in the retina at the outer limiting membrane and in synaptic terminals, especially of the cones, while globular actin was observed additionally in the inner segments. Müller cell cytoplasm and apical microvilli at the outer limiting membrane were also labeled for filamentous actin. Alpha- and beta-tubulin were evident throughout the photoreceptors, including the inner segments, but not in the synaptic terminals or at the outer limiting membrane. In the early postnatal retina of mouse, actin and tubulin were present at the ventricular surface. This pattern changed as photoreceptors fully elongated and as synaptogenesis occurred in the outer plexiform layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号