首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a reliable, inexpensive, and simple method for staining arbuscular-mycorrhizal fungal colonizations in root tissues. Apart from applications in research, this nontoxic, high-quality staining method also could be of great utility in teaching exercises. After adequate clearing with KOH, an ink-vinegar solution successfully stained all fungal structures, rendering them clearly visible.  相似文献   

2.
从盾叶薯蓣根状茎中分离并鉴定了9株内生真菌,经悬浮培养14d,分别制备灭活菌丝和菌液浓缩物。其中,内生尖孢镰刀菌Dzf17能有效地提高盾叶薯蓣无菌苗和培养细胞薯蓣皂苷元的含量和产率,且灭活菌丝的诱导效果要强于菌液浓缩物。Dzf17灭活菌丝处理无菌苗,薯蓣皂苷元的产率为78.697mg/L,是对照(27.471mg/L)的2.865倍;用Dzf17菌液浓缩物处理无菌苗,皂苷元产率为41.822mg/L,是对照的1.522倍。Dzf17灭活菌丝处理培养细胞,薯蓣皂苷元的产率为1.391mg/L,是对照(0.691mg/L)的2.013倍;用Dzf17菌液浓缩物处理培养细胞,皂苷元产率为1.214mg/L,是对照的1.757倍。结果表明,在盾叶薯蓣无菌苗或细胞培养中添加一定量的内生真菌灭活菌丝或菌液浓缩物对于提高薯蓣皂苷元含量和产量将是一种有效的方法。  相似文献   

3.
内生真菌及其对宿主植物生态适应性的影响   总被引:6,自引:0,他引:6  
从植物-真菌的相互作用和植物体内微生态学的角度,综述近年来植物-内生真菌互作关系的研究进展,分析在生物和非生物环境因子胁迫下,植物内生真菌对宿主生态适应能力的影响及其可能的机制,特别强调将植物及其内生微生物作为一个整体研究的重要性,表明植物内生真菌作为一类重要的微生物资源,可以在增强植物的生态适应性,缓解全球气候变化对植物和人类的压力方面发挥其重要的作用,因而具有良好的应用前景。  相似文献   

4.
Haustoria of Puccinia triticina (wheat leaf rust fungus) and P. hordei (barley leaf rust fungus) were isolated from susceptible and partially resistant wheat lines, and susceptible, hypersensitive and partially resistant barley lines. Haustoria were counted and measured. The size of haustoria was similar in the partially resistant and susceptible genotypes but haustoria were smaller in the hypersensitive barley line L94+Pa7. The number of haustoria was reduced in both partially and hypersensitive lines when compared with susceptible ones. Therefore it seems that the reduction in the number of haustoria is a consequence of the resistance that can be attributable either to early abortion of infection units or reduced colony growth. The reduction of the number of haustoria was more pronounced in the adult plant stage.  相似文献   

5.
6.
When surface-sterilized spores of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices Sy167 were germinated on agar plates in the slightly modified minimum mineral medium described by G. Bécard and J. A. Fortin (New Phytol. 108:211-218, 1988), slime-forming bacteria, identified as Paenibacillus validus, frequently grew up. These bacteria were able to support growth of the fungus on the agar plates. In the presence of P. validus, hyphae branched profusely and formed coiled structures. These were much more densely packed than the so-called arbuscule-like structures which are formed by AMF grown in coculture with carrot roots transformed with T-DNA from Agrobacterium rhizogenes. The presence of P. validus alone also enabled G. intraradices to form new spores, mainly at the densely packed hyphal coils. The new spores were not as abundant as and were smaller than those formed by AMF in the monoxenic culture with carrot root tissues, but they also contained lipid droplets and a large number of nuclei. In these experiments P. validus could not be replaced by bacteria such as Escherichia coli K-12 or Azospirillum brasilense Sp7. Although no conditions under which the daughter spores regerminate and colonize plants have been found yet, and no factor(s) from P. validus which stimulates fungal growth has been identified, the present findings might be a significant step forward toward growth of AMF independent of any plant host.  相似文献   

7.
Using an auxotrophic strain of Saccharomyces cerevisiae, we examined the kinetics of ribonucleic acid (RNA) synthesis following inhibition of protein synthesis caused by amino acid starvation or cycloheximide. Removal of a required amino acid immediately stopped net protein synthesis. After a brief lag, RNA synthesis also ceased. Cycloheximide, a ribosome-inhibiting drug, also immediately halted net protein synthesis. Again RNA synthesis stopped after a brief lag. Although cycloheximide and amino acid starvation affect different steps in protein biosynthesis, both inhibited RNA synthesis in identical fashion. This indicates that amino acids do not play a unique role in the control of RNA production in rapidly growing yeast; rather, it suggests that RNA synthesis is responsive to the overall rate of protein synthesis itself.  相似文献   

8.
Measurements of ribonucleic acid (RNA) synthesis using (14)C-uracil uptake in rifampin-sensitive and rifampin-resistant strains of Bacillus megatherium were carried out after infection of the bacteria with bacteriophage alpha. Phage development was inhibited in the former but not the latter strain, showing that alpha phage development is dependent on the bacterial host RNA polymerase. This dependence exists at all times during eclipse. RNA polymerase extracts showed the same in vitro rifampin sensitivity as the corresponding bacterial strains.  相似文献   

9.
迷迭香酸对几种植物病原真菌的抗菌活性*   总被引:11,自引:0,他引:11  
研究了迷迭香酸对不同植物病原真菌菌丝生长和孢子萌发的抑制活性。试验结果表明,迷迭香酸对供试的8种植物病原真菌菌丝生长均有抑制作用,其中对番茄灰霉病菌、芒果灰斑病菌、柑桔青霉和梨黑斑病菌抑制作用较强,EC50分别为615.04μg/mL、698.23μg/mL、714.50μg/mL和809.10μg/mL;对杉木猝倒病菌和苹果树腐烂病菌抑制作用次之,EC50分别为1039.92μg/mL和1044.72μg/mL;对松枯梢病菌和种实霉烂病菌的抑制作用较弱,EC50分别为1256.90μg/mL和1270.87μg/mL。迷迭香酸对供试的6种植物病原真菌孢子萌发也有明显的抑制作用,EC50大致在400~700μg/mL范围,其中对梨黑斑病菌孢子萌发抑制作用最强,EC50为395.37μg/mL。  相似文献   

10.
Desaturation of palmitic acid was investigated in an enzyme system prepared from rat liver. 2-trans-Hexadecenoic acid as well as 9-cis-hexadecenoic acid (palmitoleic acid) were found to be formed as monoenoic acid in this system.  相似文献   

11.
The nitrogen-fixing symbiosis between Rhizobiaceae and legumes is one of the best-studied interactions established between prokaryotes and eukaryotes. The plant develops root nodules in which the bacteria are housed, and atmospheric nitrogen is fixed into ammonia by the rhizobia and made available to the plant in exchange for carbon compounds. It has been hypothesized that this symbiosis evolved from the more ancient arbuscular mycorrhizal (AM) symbiosis, in which the fungus associates with roots and aids the plant in the absorption of mineral nutrients, particularly phosphate. Support comes from several fronts: 1) legume mutants where Nod(-) and Myc(-) co-segregate, and 2) the fact that various early nodulin (ENOD) genes are expressed in legume AM. Both strongly argue for the idea that the signal transduction pathways between the two symbioses are conserved. We have analyzed the responses of four classes of non-nodulating Melilotus alba (white sweetclover) mutants to Glomus intraradices (the mycorrhizal symbiont) to investigate how Nod(-) mutations affect the establishment of this symbiosis. We also re-examined the root hair responses of the non-nodulating mutants to Sinorhizobium meliloti (the nitrogen-fixing symbiont). Of the four classes, several sweetclover sym mutants are both Nod(-) and Myc(-). In an attempt to decipher the relationship between nodulation and mycorrhiza formation, we also performed co-inoculation experiments with mutant rhizobia and Glomus intraradices on Medicago sativa, a close relative of M. alba. Even though sulfated Nod factor was supplied by some of the bacterial mutants, the fungus did not complement symbiotically defective rhizobia for nodulation.  相似文献   

12.
Lauric Acid Exhibits Antifungal Activity Against Plant Pathogenic Fungi   总被引:3,自引:0,他引:3  
This study aimed at examining the effects of the saturated fatty acid lauric acid on mycelial growth of Rhizoctonia solani and Pythium ultimum and on infection of barley seedlings with Blumeria graminis f. sp. hordei. Mycelial growth of R. solani and P. ultimum in agar culture was significantly reduced by lauric acid at concentrations of 100 μm and above, while no fungal growth occurred in liquid culture at concentrations above 50 μm . Application of lauric acid at concentrations ranging from 250 to 1000 μm to barley leaves before or after inoculation with B. graminis f. sp. hordei led to significant reductions in infection. This study provides the first report of the activity of lauric acid against plant pathogenic fungi and indicates the need for investigation of its mechanism of action.  相似文献   

13.
Effect of Poxvirus Infection on Host Cell Deoxyribonucleic Acid Synthesis   总被引:5,自引:3,他引:5  
Deoxyribonucleic acid (DNA) synthesis was studied in poxvirus-infected cells by measuring (14)C-thymidine incorporation into viral and host cell DNA. A complete separation of the two species of DNA was achieved by combining the previously used "Dounce method" with a separation method based on different reannealing properties of viral and vertebrate DNA. Shortly after infection of HeLa cells with poxviruses, a burst of viral DNA synthesis occurred in the cytoplasm, but a rapid inhibition of host-cell DNA synthesis in the nucleus was observed. This inhibition of cellular DNA synthesis was also found if an accumulation of viral DNA was prevented. At high multiplicites, ultraviolet-irradiated virus inhibited host-cell DNA synthesis to the same extent as fully infectious poxvirus. Under the same conditions, heating at 60 C for 15 min caused a decrease in the ability of cowpox virus to inhibit host-cell DNA synthesis, but did not produce the same effect on vaccinia virus strain WR.  相似文献   

14.
Endophytic fungi occupy inner plant tissues, which results in various interactions between the fungus and host. Studies on endophytic fungi have been conducted in Korea for over 30 years. This paper summarizes the published results of those studies. The endophytic fungi of approximately 132 plant species in Korea have been studied since the 1990s, resulting in over 118 publications. The host plants featured in these studies comprised 3 species of mosses, 34 species of woody plants, and 95 species of herbaceous plants. At the family level, the most studied plants were members of the Poaceae family, covering 18 species. Regionally, these studies were conducted throughout Korea, but over half of the studies were conducted in Gyeongsangbuk-do, Gangwon-do, and Chungcheongnam-do. Relatively few studies have been conducted in a metropolis such as Seoul. We confirmed 5 phyla, 16 classes, 49 orders, 135 families, 305 genera, and 855 taxa of endophytic fungi, excluding Incertae sedis, whose relationship with others are unknown. Most of the endophytic fungi belonged to Ascomycota (93.2%), and a few belonged to Basidiomycota (3.6%). Since the diversity of endophytic fungi differs depending on the host plant, plant tissue, and distribution region, future studies should be conducted on multiple host plants and in various regions. Future studies on endophytic fungi are expected to broaden, including genomics and taxonomic and ecological studies of secondary metabolites.  相似文献   

15.
Arbuscule-forming fungi in the order Glomales form obligate endomycorrhizal associations with plants that make them difficult to quantify, and taxonomy of the group is only beginning to be objectively understood. Fatty acid methyl ester (FAME) profiles were analyzed to assess the diversity and quantity of fatty acids in 53 isolates of 24 glomalean species. Spores and endomycorrhizal roots of sudan grass (Sorghum sudanense) and the citrus rootstock Carrizo citrange (Poncirus trifoliata x Citrus sinensis) were examined. Spores yielded reproducible FAME profiles from replicate spore collections extracted from soil pot cultures despite being grown in association with a host plant and with contaminating microorganisms present. Unweighted pair group analysis revealed relatively tight clusters of groups at the intraspecific, specific, and generic levels; however, lipid profiles at the family level were convergent. Thus, FAME profile comparisons provided a robust measure of similarity below the family level. FAME profiles in sudan grass roots containing vesicles and/or spores of Glomus intraradices were more similar to spore profiles than to profiles from nonmycorrhizal roots. The FAME profiles for Gigaspora species, which do not form vesicles or spores in roots, were less distinct from nonmycorrhizal roots. G. intraradices and G. rosea produced fatty acids in roots that were distinguishable from each other as well as from the host root. Production in citrus roots of the fatty acid 16:1(inf(omega)5) cis by two Glomus species was correlated with the development of mycorrhizal colonization as measured by clearing and staining procedures and by estimates of total incidence and vesicle intensity. FAME analysis of roots not only provided a measure of colonization development but also served as an index of carbon allocated to intraradical fungal growth and lipid storage.  相似文献   

16.
Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids.  相似文献   

17.
18.
The tolerance of lettuce plants (Lactuca sativa L. cv. Romana) to drought stress differed with the arbuscular-mycorrhizal fungal isolate with which the plants were associated. Seven fungal species belonging to the genus Glomus were studied for their ability to enhance the drought tolerance of lettuce plants. These fungi had different traits that affected the drought resistance of host plants. The ranking of arbuscular-mycorrhizal fungal effects on drought tolerance, based on the relative decreases in shoot dry weight, was as follows: Glomus deserticola > Glomus fasciculatum > Glomus mosseae > Glomus etunicatum > Glomus intraradices > Glomus caledonium > Glomus occultum. In this comparative study specific mycorrhizal fungi had consistent effects on plant growth, mineral uptake, the CO(inf2) exchange rate, water use efficiency, transpiration, stomatal conductance, photosynthetic phosphorus use efficiency, and proline accumulation under either well-watered or drought-stressed conditions. The ability of the isolates to maintain plant growth effectively under water stress conditions was related to higher transpiration rates, levels of leaf conductance, and proline, N, and P contents. Differences in proline accumulation in leaves among the fungal symbioses suggested that the fungi were able to induce different degrees of osmotic adjustment. The detrimental effects of drought were not related to decreases in photosynthesis or water use efficiency. Neither of these parameters was related to P nutrition. The differences in P and K acquisition, transpiration, and stomatal conductance were related to the mycorrhizal efficiencies of the different fungi. Our observations revealed the propensities of different Glomus species to assert their protective effects during plant water stress. The greater effectiveness of G. deserticola in improving water deficit tolerance was associated with the lowest level of growth reduction (9%) under stress conditions. The growth of plants colonized by G. occultum was reduced by 70% after a progressive drought stress period. In general, the different protective effects of the mycorrhizal isolates were not associated with colonizing ability. Nevertheless, G. deserticola was the most efficient fungus and exhibited the highest levels of mycorrhizal colonization, as well as the greatest stimulation of physiological parameters.  相似文献   

19.
To determine whether polyamine synthesis is dependent on deoxyribonucleic acid (DNA) synthesis, polyamine levels were estimated after infection of bacterial cells with ultraviolet-irradiated T4 or T4 am N 122, a DNA-negative mutant. Although phage DNA accumulation was restricted to various degrees in comparison to cells infected with T4D, nearly commensurate levels of putrescine and spermidine synthesis were observed after infection, regardless of the rate of phage DNA synthesis. We conclude from these data that polyamine synthesis after infection is independent of phage DNA synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号