首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of capsular polysaccharide (CPS) by the fish pathogen Photobacterium damselae subsp. piscicida was analysed in the virulent strain DI 21 in relation to the growth phase and presence or absence of available iron in the culture medium. Bacterial cells were processed for electron microscopy by a procedure that improves visualisation of the capsule through stabilisation with polycationic ferritin, and electron micrographs of ultrathin sections were scanned with an acquired computerised image analyser to measure capsular area. Cells grown under iron-limited conditions always had a significantly lower amount of capsular material on their surfaces than iron-supplemented cells, even when cells from different culture phases were compared. Irrespective of the presence or absence of iron in the culture medium the amount of CPS decreased with the age of the culture, i.e., from early log phase to late log phase to stationary phase. The in vivo significance of this regulatory role of iron remains to be investigated.  相似文献   

2.
The intracellular pool of free amino of Streptococcus lactis--lysine producer contains a good number of amino acids when cultivated on the corn medium. Glutamic acid, proline, alanine, lysine, leucine, histidine and arginine are in predominance. An almost complete amino acid pool develops at an early exponential phase of Str. lactis growth under stationary cultivation conditions. The content of free amino acids increases 4-fold during the transition from the early exponential phase to the stationary phases under submerged cultivation conditions. This can be attributed to a more intensive amino acid exchange during the medium stirring than during stationary cultivation.  相似文献   

3.
The goals of this work were to test the feasibility of a continuous plug-flow (PF) bioreactor and to compare the growth in the PF bioreactor to that in a batch bioreactor. A culture of Pseudomonas putida was pumped through a tube made of Teflon with varying residence times. The culture was aerated by pumping of air simultaneously with liquid medium to provide air bubbles along the tubular culture. When the residence time in the PF bioreactor was greater than the time needed to reach the stationary phase in batch mode, the maximum biomass density reached in PF mode was the same as the maximum density reached in the batch bioreactor, and benzoate (the only carbon and energy source) was completely consumed. The drawbacks for practical application of PF were found to be fluctuations of cell concentration in the outflow cultural liquid due to cell aggregation, significant cell adhesion to the inner wall of Teflon tubing, and inadequate aeration.  相似文献   

4.
Effects of the cultivation method (suspension cultures in a liquid nutrient broth or colonies on a solid agarized medium) and the growth phase on the lipopolysaccharide (LPS) composition of Yersinia pseudotuberculosis(O : Ib serovar, strain KS 3058) grown in cold (5°C) were studied. The amount of the LPS synthesized by cells depended on the bacteria growth phase for both media. The LPS acylation degree was constant, whereas the length of the O-specific polysaccharide chain varied with the culture age and for both media achieved maximum in the stationary growth phase. The bacteria cultivation on the nutrient agar stimulated more intensive synthesis of LPS, which were extracted more easily, had longer polysaccharide O-chains, and were more toxic than LPS of the bacteria cultivated in the liquid medium. It was proposed that the cultivation of Yersinia pseudotuberculosisin cold as colonies on the agar surface increases the bacterial virulence.  相似文献   

5.
AIMS: The aim of the present investigation was to study the effects of different inorganic carbon and nitrogen sources on nitrate uptake and heterocyst differentiation in the culture of cyanobacterium Anabaena sp. PCC 7120. METHODS AND RESULTS: Anabaena was cultivated in media BG11 containing combined nitrogen and supplementary NaHCO3 or CO2. Cell growth, heterocyst differentiation, nitrate reductase (NR, EC 1.7.7.2), glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) and NO uptake were analysed. The cells cultivated in BG11(0) medium with aeration were taken as reference. Experimental results showed that the differentiation frequency of heterocysts when the cells were cultivated with elevated CO2 was higher than that of the cells grown with air or bicarbonate. Heterocysts appeared unexpectedly when CO2 was introduced into the medium containing nitrate. However, no heterocysts emerged when CO2 was added to medium containing NH or urea, or when NaHCO3 was supplied to the medium with nitrate. Both nitrate uptake rate and nitrate reduction enzyme activity were depressed by the supplement of CO2 to the culture. The activity of G6PDH was enhanced with the increase in heterocyst differentiation frequency. CONCLUSION: CO2 might compete with NO for energy and electrons in the uptake process and CO2 appears favoured. This led to a high intracellular C/N ratio and a relative N limitation. So the process of heterocyst differentiation was activated to supplement nitrogen uptake. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided an attractive possibility to form more heterocysts by rapid growth of Anabaena cells cultivated in the medium containing nitrate in order to increase nitrogen fixation and hydrogen production.  相似文献   

6.
Tetraselmis gracilis, a Prasinophycean alga found in estuaries and in the open ocean, was cultivated under different conditions of aeration, which resulted in variations of inorganic carbon in the medium. Relative growth rates, nitrate reductase and carbonic anhydrase activities were daily determined and correlated to the concentration of nitrate, nitrite, phosphate, inorganic and organic carbon in the media. Nitrate reductase catalyzes the reversible carbon dioxide hydration reaction. The activity profiles of both enzymes during 10 days of cultivation under aeration with air showed an inverse relationship: the maximum in the activity of nitrate reductase coincided with the minimum of carbonic anhydrase activity. An ionizable organic carbon species with pKa in the range of metabolites of the photorespiratory path was found parallel with the increase of carbonic anhydrase activity and the decrease of nitrate reductase activity. The onset of photorespiration is probably one of the factors involved in the simultaneous regulation of these enzymatic processes. Cultures aerated with air containing 5% CO2 showed different profiles for nitrate reductase activity and nitrate uptake.  相似文献   

7.
The release of chromosomal DNA into culture media has been reported for several naturally transformable bacterial species, but a direct link between competence development and the liberation of DNA is generally lacking. Based on the analysis of strains with mutations in competence-regulatory genes and the use of conditions favouring or preventing competence, we provide evidence that DNA release is triggered by the induction of competence in Streptococcus pneumoniae. Kinetic analyses revealed that whereas competence was maximal 20 min after addition of competence-stimulating peptide, and then decreased, the amount of liberated DNA continued to increase and reached a maximum in stationary phase, when cells are no longer competent for DNA uptake. These data are not consistent with the proposal that release of DNA by a fraction of the population is coordinated with uptake by the remainder. Moreover, we observed that an unidentified DNase was specifically induced or released in competent cultures, and that together with the major pneumococcal endonuclease, EndA, it could degrade released DNA. Nearby complete abolition of release in a mutant lacking both the major autolysin, LytA, and the autolytic lysozyme, LytC, indicated that DNA liberation occurs by LytA-LytC-dependent cell lysis. These observations suggest that competence-dependent DNA release is one facet of a more general phenomenon of sensitization to autolysis that reaches its maximum in stationary phase.  相似文献   

8.
Streptococcus pneumoniae requires 0.15 mM-Ca2+ in the medium for optimal growth. Increasing the Ca2+ concentration to 1 mM triggers either a differentiative state, competence for genetic transformation during exponential growth, or partial lysis as soon as the cultures enter stationary phase. Genetic and physiological data both suggest that these responses are under the control of activator(s), excreted in the presence of high Ca2+ concentrations. 45Ca2+ transport is also stimulated by the activator(s). The amiloride derivative 2',4'-dimethylbenzamil (DMB) inhibits 45Ca2+ transport and prevents lysis and competence development. This provides evidence in favour of the involvement of Ca2+ transport in competence and culture lysis. On the other hand, addition of DNA to a competent culture prevents lysis of wild-type bacteria while a mutant, defective for DNA uptake, is not protected from lysis by exogenous DNA. An hypothesis is proposed for competence induction as a global metabolic response to Ca2+, under the control of competence factor.  相似文献   

9.
The strain N of Trimyema compressum , an anaerobic free-living ciliate, was cultivated axenically in a medium containing a buffered salt solution, yeast extract, trypticase, and glutathione. Dead bacteria were indispensable as food; a culture of the ciliate together with heat-killed Klebsiella pneumoniae has been established for more than one year. In the medium described, the ciliates grow to a higher cell density than in cultures with living bacteria as food. During the process of axenization, a nonmethanogenic bacterial endosymbiont was lost. In the microbodies of T. compressum , hydrogenase could be localized by the technique of indirect immunofluorescence.  相似文献   

10.
Streptococcus pneumoniae forms part of the natural microbiota of the nasopharynx. For the pneumococcus to cause infection, colonization needs to occur and this process is mediated by adherence of bacteria to the respiratory epithelium. Although the capsular polysaccharide (CPS) of S. pneumoniae is known to be important for infection to occur, its role in colonization is controversial. Biofilm models are starting to emerge as a promising tool to investigate the role of CPS during nasopharyngeal carriage, which is the first step in the dissemination and initiation of a pneumococcal infection. Using a well-defined model system to analyse in vitro biofilm formation in pneumococcus, here we explore the molecular changes underlying the appearance of capsular mutants using type 3 S. pneumoniae cells. Spontaneous colony phase variants show promoter mutations, as well as duplications, deletions and point mutations in the cap3A gene, which codes for a UDP-glucose dehydrogenase (UDP-GlcDH). Increased biofilm-forming capacity could usually be correlated with a reduction both in colony size and in the relative amount of CPS present on the cell surface of each colony variant. However, a mutation in Cap3A Thr83Ile (a strictly conserved residue in bacterial UDP-GlcDHs) that resulted in very low CPS production also led to impaired biofilm formation. We propose that non-encapsulated mutants of pneumococcal type 3 strains are essentially involved in the initial stages (the attachment stage) of biofilm formation during colonization/pathogenesis.  相似文献   

11.
The filamentous cyanobacterium,Scytonema sp. TISTR 8208, which produces a cyclic peptide antibiotic, was cultivated for 20 d in a seaweed-type bioreactor containing anchored polyurethan foam strips. Cells immobilized onto the foam strips produced the antibiotic for only several days, and the secreted antibiotic disappeared very rapidly from the medium. Cells accumulated the antibiotic intracellularly in a growth-related manner, and secreted it in the stationary phase. Since the antibiotic has a stable physico-chemical nature, the cells seem to take it up and metabolize it. When continuous cultivation was attempted, stable production of the antibiotic was maintained in the bioreactor for 16 d at a dilution rate of 0.01 h–1. Three times more antibiotic was produced in the continuous culture than in the batch culture by the 16th day.  相似文献   

12.
The cultivation of some ectomycorrhizal fungi growing in bioreactors under submerged aerobic conditions was modified by regulating the cultivation parameters and determining the optimum duration of the process. For this goal, the active mycelium was determined by quantifying its ergosterol content. Lactarius deliciosus (strain LDF5) and Suillus mediterraneensis (strain 35 AM) were cultivated in a BRAUN Biostat®B bioreactor under the following fermentation conditions: 23 °C, pH 5.5, 60’% dissolved oxygen, 100 rpm stirring, and 1.2‐‐2 L/min air flow. In addition, several cultivation conditions were assayed for L. deliciosus. During the fermentation cycle, samples were taken at different times. Ergosterol was extracted and quantified using high‐performance liquid chromatography (HPLC). The quantity of ergosterol in L. deliciosus increased with the age of the culture up to 4.7 μg/mg (17‐day‐old culture). In the case of S. mediterraneensis, this quantity increased up to day 11 of the cultivation, and then it decreased. Three days after the addition of fresh medium, a maximum of 8.9 μg/mg was reached. On the other hand, the highest ergosterol content in L. deliciosus (6.3 μg/mg) was obtained using MMN medium with the addition of agar.  相似文献   

13.
The human bacterial pathogen Streptococcus pneumoniae dies spontaneously upon reaching stationary phase. The extent of S. pneumoniae death at stationary phase is unusual in bacteria and has been conventionally attributed to autolysis by the LytA amidase. In this study, we show that spontaneous pneumococcal death is due to hydrogen peroxide (H(2)O(2)), not LytA, and that the gene responsible for H(2)O(2) production (spxB) also confers a survival advantage in colonization. Survival of S. pneumoniae in stationary phase was significantly prolonged by eliminating H(2)O(2) in any of three ways: chemically by supplementing the media with catalase, metabolically by growing the bacteria under anaerobic conditions, or genetically by constructing DeltaspxB mutants that do not produce H(2)O(2). Likewise, addition of H(2)O(2) to exponentially growing S. pneumoniae resulted in a death rate similar to that of cells in stationary phase. While DeltalytA mutants did not lyse at stationary phase, they died at a rate similar to that of the wild-type strain. Furthermore, we show that the death process induced by H(2)O(2) has features of apoptosis, as evidenced by increased annexin V staining, decreased DNA content, and appearance as assessed by transmission electron microscopy. Finally, in an in vivo rat model of competitive colonization, the presence of spxB conferred a selective advantage over the DeltaspxB mutant, suggesting an explanation for the persistence of this gene. We conclude that a suicide gene of pneumococcus is spxB, which induces an apoptosis-like death in pneumococci and confers a selective advantage in nasopharyngeal cocolonization.  相似文献   

14.
《Process Biochemistry》2007,42(1):71-76
The effect of in situ immobilization of Gluconobacter oxydans on a novel carrier material in a repeated-fed-batch operated packed-bed bubble-column bioreactor for the production of the fine chemical dihydroxyacetone was investigated experimentally. The carrier material were biocompatible, durable, coated Ralu-rings. The coating was a porous silicone matrix with satisfactory wetting characteristics. Settling of cells was relatively rapid. The cells were protected from abrasion caused by shear forces. A sufficiently high oxygen supply rate to the immobilized cells was provided due to the high oxygen permeability of the silicone matrix. The immobilized biomass was estimated to be about 65% of the total biomass contained in the bioreactor after 18 days of operation. The observed space-time yield was approx. 76% higher compared to a similar process which was performed without an optimized fermentation medium. Compared to previous experiments with a trickle-bed bioreactor, the space-time yield was approx. 3.7 times higher. A typical time course of the immobilization process was observed: after an induction phase, a transition phase followed which later on gave way to a nearly linear accumulation phase. A stationary phase with regard to the amount of immobilized active cells, however, was not reached. Hence, a higher bioreactor performance than observed could be expected at longer operation times.  相似文献   

15.
AIMS: The goal of this study was to identify a marine algae-associated bacterium isolated from Laminaria japonica and investigate this microorganism's growth-promoting effects on plants. METHODS AND RESULTS: The bacterium, identified as Pseudoalteromonas porphyrae, was determined to display a biostimulatory activity for seed germination and shoot growth in several agricultural plants and also for growth in ginseng callus cell culture. This biostimulatory activity was linked to a catalase enzyme that was excreted in the maximal amount during the transition from logarithmic growth phase to stationary growth phase. In addition, selected shifts in growth temperature and medium salinity affected the amount of enzyme excreted. The purified catalase was determined to be composed of identical subunits. The catalase of interest displayed significantly higher biostimulatory activity than the catalase from bovine liver. CONCLUSIONS: The catalase investigated in this study is unique in that it promotes growth in and possibly contributes to stress tolerance of plants. SIGNIFICANCE AND IMPACT OF THE STUDY: The catalase of interest has the potential for use in treatments that aim to improve percent seed germination as well as obtaining tall shoots in a shorter time period.  相似文献   

16.
A recombinant strain of Aspergillus niger (B1-D), engineered to produce the marker protein hen egg white lysozyme, was investigated with regard to its susceptibility to "oxidative stress" in submerged culture in bioreactor systems. The culture response to oxidative stress, produced either by addition of exogenous hydrogen peroxide or by high-dissolved oxygen tensions, was examined in terms of the activities of two key defensive enzymes: catalase (CAT) and superoxide dismutase (SOD). Batch cultures in the bioreactor were generally found to have maximum specific activities of CAT and SOD (Umg x protein(-1)) in the stationary/early-decline phase. Continuous addition of H2O2 (16 mmole L(-1) h(-1)), starting in the early exponential phase, induced CAT but did not increase SOD significantly. Gassing an early exponential-phase culture with O2 enriched (25 vol%) air resulted in increased activities of both SOD and CAT relative to control processes gassed continuously with air, while gassing the culture with 25 vol% O2 enriched air throughout the experiment, although inducing a higher base level of enzyme activities, did not increase the maximum SOD activity obtained relative to control processes gassed continuously with air. The profile of the specific activity of SOD (U mg CDW(-1)) appeared to correlate with dissolved oxygen levels in processes where no H2O2 addition occurred. These findings indicate that it is unsound to use the term "oxidative stress" to encompass a stress response produced by addition of a chemical (H2O2) or by elevated dissolved oxygen levels because the response to each might be quite different.  相似文献   

17.
Modifying action of C7-alkyloxybenzol (methylresorcin) on the antilysozyme activity (ALA) of opportunistic microorganisms (Bacillus cereus, Klebsiella pneumoniae, and Escherichia coli) was studied. C7-alkyloxybenzol (C7-AOB, methylrezorcin), which was used as chemical analogue of microbial autoregulators, was added to growth medium containing microorganisms, which were cultivated until entered stationary phase. Isolation of clones was performed by seeding of 24-hours broth culture on solid growth medium, and then ALA was measured using photometric method. Modifying action of C7-AOB on ALA characteristic-based population structure of B.cereus, K. pneumoniae, and E. coli was revealed. Maximal effect was detected when the concentration of C7-AOB was in range 1-10 mcg/ml. Decrease of mean ALA level caused by C7-AOB was linked to decrease of proportion of clones with high and intermediate ALA level, increase of proportion of clones with low level of lysozyme inhibitor, and emergence of clones lacking ALA in the population.  相似文献   

18.
【目的】为了解猪链球菌各血清型荚膜多糖合成相关基因保守区的功能与基因进化关系,【方法】在分析已知的猪链球菌1、2、7、9型荚膜多糖合成相关基因簇序列,及其各orf与猪链球菌33个血清型基因组DNA杂交结果的基础上,提出猪链球菌荚膜多糖合成相关基因簇具有与肺炎链球菌相似的盒样结构的假设。并采用PCR、测序和Southern印迹杂交等方法验证这些假设。【结果】结果显示,猪链球菌的荚膜多糖合成相关基因簇确存在与肺炎链球菌相似的盒样结构,5’端的前4个调节相关基因同源性极高,基因簇两端都有保守的侧翼基因,且在3’端的侧翼序列中找到了适于扩增荚膜多糖合成相关基因簇中血清型特异性区域的下游引物所在基因(aroA)。分析发现,各血清型的orfY、orfX、cpsA、cpsB、cpsC、cpsD和aroA的亲缘关系较近。  相似文献   

19.
AIMS: The aim of this work was to investigate the connection between oxidation-reduction (redox) potential and stationary phase induction of RpoS in Salmonella Typhimurium. METHODS AND RESULTS: A lux-based reporter was used to evaluate RpoS activity in S. Typhimurium pure cultures. During growth of S. Typhimurium, a drop in the redox potential of the growth medium occurred at the same time as RpoS induction and entry into stationary phase. An artificially induced decrease in redox potential earlier during growth reduced the time to RpoS induction and Salmonella entered the stationary phase prematurely. In contrast, under high redox conditions, Salmonella grew unaffected and entered the stationary growth phase as normal, although RpoS induction did not occur. As a consequence, stationary phase cells grown in the high redox environment were significantly more heat sensitive (P < 0.05) than those grown under normal conditions. CONCLUSIONS: This work suggests that redox potential can regulate RpoS levels in S. Typhimurium and can thus, control the expression of genes responsible for thermal resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to manipulate RpoS induction and control stationary phase gene expression can have important implications in food safety. Early RpoS induction under low redox potential conditions can lead to enhanced resistance in low cell concentrations to inimical processes such as heat stress. Inhibition of RpoS induction would abolish stationary phase protective properties making cells more sensitive to common food control measures.  相似文献   

20.
目的中试生产中对肺炎克雷伯杆菌培养工艺进行改进及优化。方法采用液体综合培养基代替半综合培养基在10L和100L中国丽生物反应器中对肺炎克雷伯杆菌进行培养,在10L中国丽生物反应器探讨不同的培养基配方、pH值、培养温度、搅拌转速、溶氧,工艺参数稳定后,扩大培养到100L中国丽生物反应器,并探讨培养过程中补加葡萄糖的浓度及补加方式等对细菌浓度及荚膜多糖含量的影响。结果肺炎克雷伯杆菌液体综合培养基可代替半综合培养基用于该菌的培养,培养过程中维持pH值7.2、温度37℃、通气60L/h、搅拌转速250r/min、培养到2h时开始以恒速补加30mL/L40%葡萄糖溶液、培养时间为5h,细菌长势最好,收获的荚膜多糖含量最高。结论肺炎克雷伯杆菌的培养工艺放大到100L中国丽生物反应器中,经过多次试验初步建立了稳定的肺炎克雷伯杆菌中试培养工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号