首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E Lusby  K H Fife    K I Berns 《Journal of virology》1980,34(2):402-409
The inverted terminal repetition in adeno-associated virus type 2 DNA has been sequenced. The terminal repetition contain 145 nucleotides of which the first 125 nucleotides can self-base pair to form a T-shaped hairpin structure. Both restriction endonuclease analysis with SmaI and BglI and direct sequence analysis of the SmaI fragments provide evidence for two sequences in the region of the terminal repetition between nucleotides 44 and 81. The two sequences represent an inversion of the first 125 nucleotides of the terminal repetition. Based on these data a model for adeno-associated virus DNA replication is presented which agrees in detail with a general model for eucaryotic DNA replication originally proposed by Cavalier-Smith (T. Cavalier-Smith, Nature [London] 18:672--684, 1976).  相似文献   

2.
The nucleotide sequence running from the genetic left end of bacteriophage T7 DNA to within the coding sequence of gene 4 is given, except for the internal coding sequence for the gene 1 protein, which has been determined elsewhere. The sequence presented contains nucleotides 1 to 3342 and 5654 to 12,100 of the approximately 40,000 base-pairs of T7 DNA. This sequence includes: the three strong early promoters and the termination site for Escherichia coli RNA polymerase: eight promoter sites for T7 RNA polymerase; six RNAase III cleavage sites; the primary origin of replication of T7 DNA; the complete coding sequences for 13 previously known T7 proteins, including the anti-restriction protein, protein kinase, DNA ligase, the gene 2 inhibitor of E. coli RNA polymerase, single-strand DNA binding protein, the gene 3 endonuclease, and lysozyme (which is actually an N-acetylmuramyl-l-alanine amidase); the complete coding sequences for eight potential new T7-coded proteins; and two apparently independent initiation sites that produce overlapping polypeptide chains of gene 4 primase. More than 86% of the first 12,100 base-pairs of T7 DNA appear to be devoted to specifying amino acid sequences for T7 proteins, and the arrangement of coding sequences and other genetic elements is very efficient. There is little overlap between coding sequences for different proteins, but junctions between adjacent coding sequences are typically close, the termination codon for one protein often overlapping the initiation codon for the next. For almost half of the potential T7 proteins, the sequence in the messenger RNA that can interact with 16 S ribosomal RNA in initiation of protein synthesis is part of the coding sequence for the preceding protein. The longest non-coding region, about 900 base-pairs, is at the left end of the DNA. The right half of this region contains the strong early promoters for E. coli RNA polymerase and the first RNAase III cleavage site. The left end contains the terminal repetition (nucleotides 1 to 160), followed by a striking array of repeated sequences (nucleotides 175 to 340) that might have some role in packaging the DNA into phage particles, and an A · T-rich region (nucleotides 356 to 492) that contains a promoter for T7 RNA polymerase, and which might function as a replication origin.  相似文献   

3.
We have established the nucleotide sequence for the inverted terminal repetition of human adenovirus type 3, a subgroup B adenovirus. The repetition, which is 136 bp long, shows a high degree of homology with the known sequence for the inverted repetition of adenovirus type 5 (Steenbergh et al., 1977) a subgroup C adenovirus. Partial sequence information convering 120 bp of the inverted terminal repetitions of human serotype 12, a subgroup A member, and of simian adenovirus type 7 has also been obtained. A comparison of the established sequences shows that the terminal repetitions, in particular the first 50 bp from the ends, contain sequences that have been well conserved in adenovirus evolution. For instance, only six mismatched base pairs were detected among the first 50 bp in the repetitions of simian adenovirus type 7 and human adenovirus type 5, although the homology between simian adenovirus 7 and human subgroup C adenoviruses was estimated to be only 30%. A 14 bp sequence located 9-22 nucleotides from the ends is present in DNAs from all the human serotypes examined as well as in simian adenovirus 7 DNA. Furthermore, the simian adenovirus 7 repetition contains a 21 bp sequence which is present in SV40 DNA, close to the origin of DNA replication.  相似文献   

4.
We have determined the nucleotide sequence of the inverted repetition present at the termini of adenovirus type 2 DNA. The terminal repetition is 103 nucleotides long. It is exactly identical in sequence at both termini. Adenovirus types 2 and 5 molecules share a perfect homology within this region.  相似文献   

5.
The T1 oligonucleotide in the genome Rous sarcoma virus (RSV) that corresponds to the initiation site of DNA synthesis in vitro was identified by hybridization of genome RNA with RSV strong stop DNA (the initial 101-nucleotide long fragment synthesized in endogenous reactions) and partially sequenced. The sequence of (C2, U2) A-U-U-U-G found corresponds to the d(A-A-T-G-A-A-G) sequence at the 5′ end of the DNA product plus the CA-OH sequence at the 3′ end of the tRNATrp primer. Therefore the nucleotide opposite the terminal A of the primer is the complementary U. Furthermore, no internal repetition of more than 30 nucleotides of the 5′ sequence could be detected.  相似文献   

6.
pSTNV-1 is a chimera plasmid that contains a nearly full-size double-stranded DNA copy of the satellite tobacco necrosis virus RNA genome (see preceding paper by van Emmelo et al., 1980) and we report here the complete nucleotide sequence of this STNV2 DNA insert. The results show that except for 23 nucleotide pairs corresponding to the 5′ end of STNV RNA, a full-size STNV DNA copy is present in pSTNV-1. The total nucleotide sequence of the STNV genome contains 1239 residues. The amino acid sequence of the coat protein can be deduced from the 5′ half of the DNA message strand and shows a rather hydrophobic carboxyl-terminal region and a basic amino-terminal region. The 3′ untranslated part of the viral RNA is 622 nucleotides long. A secondary structure model for the 5′ end showing an interaction with a segment in the 3′ half is proposed. The 3′ end region can be folded into a transfer RNA cloverleaf-like structure with an anticodon for AUG.  相似文献   

7.
S Y Shiue  J C Hsieh    J Ito 《Nucleic acids research》1991,19(14):3805-3810
DNA replication of PRD1, a lipid-containing phage, is initiated by a protein-priming mechanism. The terminal protein encoded by gene 8 acts as a protein primer in DNA synthesis by forming an initiation complex with the 5'-terminal nucleotide, dGMP. The linkage between the terminal protein and the 5' terminal nucleotide is a tyrosylphosphodiester bond. The PRD1 terminal protein contains 13 tyrosine residues in a total of 259 amino acids. By site-directed mutagenesis of cloned PRD1 gene 8, we replaced 12 of the 13 tyrosine residues in the terminal protein with phenylalanine and the other tyrosine residue with asparagine. Functional analysis of these mutant terminal proteins suggested that tyrosine-190 is the linking amino acid that forms a covalent bond with dGMP. Cyanogen bromide cleavage studies also implicated tyrosine-190 as the DNA-linking amino acid residue of the PRD1 terminal protein. Our results further show that tyrosine residues at both the amino-terminal and the carboxyl-terminal regions are important for the initiation complex forming activity. Predicted secondary structures for the regions around the DNA linking amino acid residues were compared in three terminal proteins (phi 29, adenovirus-2, and PRD1). While the linking amino acids serine-232 (phi 29) and serine-577 (adenovirus-2) are found in beta-turns in hydrophilic regions, the linking tyrosine-190 of the PRD1 terminal protein is found in a beta-sheet in a hydrophobic region.  相似文献   

8.
Deletion mutants of bacteriophage BF23 were isolated and the positions of the deletions were determined. Two different deletable regions were detected: one in the same region as previously reported for bacteriophage T5, which is closely related to BF23; and the other within both terminal repetitions. The former deletable region lay between positions 0.31 and 0.36, which represented the fractional lengths of the BF23 ( + ) DNA as measured from its left end. The latter deletion was evenly divided between the two terminal repetitions. The deletion in the left terminal repetition lay between positions 0.044 and 0.078 and was repeated in the corresponding region of the right terminal repetition between positions 0.966 and 1.0. The size of the DNA transferred to host cells during the first step of DNA transfer by BF23 carrying deletions in the terminal repetitions of its DNA was less than the size of DNA transferred during the first step by wild-type BF23 by an amount equal to the size of the deletion in each terminal repetition. This finding suggests the existence of a specific mechanism for delineating the position at which the first step of DNA transfer is stopped.  相似文献   

9.
Short nucleotide sequences at the 3'-termini of adenovirus types 2 and 5 DNA have been determined using T4 DNA polymerase as described by P. T. Englund (1972). The terminal sequences of both serotypes appear to be completely identical. Both molecular ends of type 2 as well as of type 5 DNA terminate with the sequence ...pCpC...pGpApTpG3', consistent with the presence of an inverted terminal repetition in adenovirus DNA.  相似文献   

10.
An unusual left end (M-end) has been identified on bacteriophage T7 DNA isolated from T7-infected cells. This end has a "hairpin" structure and is formed at a short inverted repeat sequence centered around nucleotide 39,587 of T7, 190 base-pairs to the left of the site where a mature left end is formed on the T7 concatemer. We do not detect the companion right end that would be formed if the M-end is produced by a double-stranded cut on the T7 concatemer. This suggests that the hairpin left end may be generated from a single-stranded cut in the DNA that is used to prime rightward DNA synthesis. The formation of M-end does not require the products of T7 genes 10, 18 or 19, proteins that are essential for the formation of mature T7 ends. During infection with a T7 gene 3 (endonuclease) mutant, phage DNA synthesis is reduced and the concatemers are not processed into unit length DNA molecules, but both M-end and the mature right end are formed on the concatemer DNA. These two ends are also found associated with the large, rapidly sedimenting concatemers formed during a normal T7 infection while the mature left end is present only on unit length T7 DNA molecules. We propose that DNA replication primed from the hairpin end produced by a nick in the inverted repeat sequence provides a mechanism to duplicate the terminal repeat before DNA packaging. Packaging is initiated with the formation of a mature right end on the branched concatemer and, as the phage head is filled, the T7 gene 3 endonuclease may be required to trim the replication forks from the DNA. Concatemer processing is completed by the removal of the 190 base-pair hairpin end to produce the mature left end.  相似文献   

11.
Phage Cp-1 fromStreptococcus pneumoniaemakes use of a protein-priming mechanism to start replication of its linear DNA: the first reaction consists of the addition of 5′ dAMP to a molecule of the primer protein, an initiation event occurring at both DNA ends. After elongation of the initiation complex, the primer protein remains linked to the 5′ end of the nascent DNA chain, and is subsequently referred to as terminal protein (TP). In this paper, using DNA-free extracts from Cp-1-infectedS. pneumoniae, we provide evidence that the formation of the covalent complex TP-dAMP is a template-instructed reaction and that ssDNA molecules can serve as templates for TP-primed replication. A mutational analysis of the 3′ terminal nucleotides of Cp-1 DNA reveals that a precise DNA sequence is required for efficient template recognition, and thatin vitroinitiation of Cp-1 DNA replication is directed by the third nucleotide of the template. However, the two terminal nucleotides are recovered during the first steps of elongation. A new variant of the sliding-back mechanism for protein-primed initiation, firstly described forBacillus subtilisphage φ29, is proposed to account for the maintenance of Cp-1 DNA ends. The results presented here reinforce the hypothesis that sliding-back must be a common feature in all genomes that use protein-priming to initiate replication.  相似文献   

12.
Nuclear factor I is a 47-kd protein, isolated from nuclei of HeLa cells, that binds specifically to the inverted terminal repeat of the adenovirus (Ad) DNA and enhances Ad DNA replication in vitro. We have studied the DNA sequence specificity of nuclear factor I binding using cloned terminal fragments of the Ad2 genome and a set of deletion mutants. Binding of nuclear factor I protects nucleotides 19-42 of Ad2 DNA against DNase I digestion. Filter binding assays show that deletion of the first 23 nucleotides does not impair binding while a deletion of 24 nucleotides reduces binding severely. However, binding studies on Ad12 DNA indicate that nucleotide 24 can be mutated. Fragments containing the first 40 bp are bound normally while the first 38 bp are insufficient to sustain binding. Taken together, these results indicate that the minimal recognition site of nuclear factor I contains 15 or 16 nucleotides, located from nucleotide 25 to nucleotide 39 or 40 of the Ad2 DNA. This site contains two of the four conserved nucleotide sequences in this region. Sequences flanking the minimal recognition site may reduce the binding affinity of nuclear factor I. In accordance with these binding studies, DNA replication of a fragment that carries the sequence of the terminal 40 nucleotides of Ad2 at one molecular end is enhanced by nuclear factor I in an in vitro replication system.  相似文献   

13.
The double-stranded linear DNA of Bacillus subtilis phage O29 is replicated by a mechanism in which a terminal protein (TP) acts as a primer. The second 3'-terminal nucleotide of the template directs the incorporation of the 5'-terminal nucleotide into the TP, giving rise to the initiation complex TP-dAMP. Elongation then proceeds by a sliding-back mechanism in which the dAMP covalently linked to the TP pairs to the 3'-terminal nucleotide of the template strand to recover full-length DNA. We have studied the sequence requirements for efficient initiation of replication using mutated TP-free double-stranded DNA fragments. Efficient initiation only requires the terminal repetition 5'-AA. The 3'-terminal T, although not used as template, increases the affinity of DNA polymerase for the initiator nucleotide; in addition, although to a minor extent, the third 3'-terminal position also directs the formation of the initiation complex and modulates the initiation rate at the second position. Efficient elongation requires a previous sliding-back, demanding again a repetition of two nucleotides at the 3' end; if the sliding-back is prevented, a residual elongation can proceed directly from the second position or after jumping back from the third to the first position.  相似文献   

14.
The major form of mouse L-cell mitochondrial DNA contains a small displacement loop at the replication origin, created by synthesis of a 550 to 670-nucleotide portion of the heavy strand. These short heavy-strand segments remain hydrogen-bonded to the parental light strand and are collectively termed 7 S mitochondrial DNA. The unique location of these 7 S mitochondrial DNAs at the heavy-strand origin suggests that they may function as primers in the synthesis of full-length heavy strands. Ribonucleotides have been detected at the 5′-end of some of these molecules, which are most likely remnants of primer RNAs. Using 5′-end labeling in vitro, we have determined that these ribonucleotides occur at several discrete positions along the nucleotide sequence of the origin region, which suggests that there may be variability in the precise initiation point of RNA priming or in the location of the switchover from RNA priming to DNA synthesis. The length of 5′-end RNA was estimated by alkali treatment of mitochondrial DNA prior to end labeling. A range of one to ten ribonucleotides was hydrolyzed from the 5′-end of some 7 S mitochondrial DNA strands. This is the first evidence of RNA priming at a eukaryotic cell DNA replication origin.  相似文献   

15.
Tandem repeats within the inverted terminal repetition of vaccinia virus DNA   总被引:23,自引:0,他引:23  
R Wittek  B Moss 《Cell》1980,21(1):277-284
A tandemly repeated sequence within the genome of vaccinia virus is cut to fragments of approximately 70 bp by Hinf I, Taq I or Mbo II. The 70 bp repetition was localized within the much larger (10,300 bp) inverted terminal repetition by restriction analysis of cloned DNA fragments and by hybridization of the purified 70 bp repeat to vaccinia virus DNA restriction fragments. The molar abundance of the 70 bp fragment corresponds to a 30 fold repetition at each end of the genome. The repeating restriction endonuclease sites were mapped by agarose gel electrophoresis of partial Hinf I digests of the terminally labeled cloned DNA fragment. The first of 13 repetitive Hinf I sites occurred approximately 150 bp from the end of the cloned DNA. After an intervening sequence of approximately 435 bp, a second series of 17 repetitive Hinf I sites occurred. The DNA between the two blocks of repetitions has a unique sequence containing single Dde I, Alu I and Sau 3A sites. Tandem repeats within the inverted terminal repetition could serve to accelerate self-annealing of single strands of DNA to form circular structures during replication.  相似文献   

16.
The nature of the ends of the vaccinia virus genome was determined by nucleotide sequencing. Our finding of terminal hairpins indicated that the linear double-stranded DNA molecule consists of a single continuous polynucleotide chain. The 104 nucleotide apex of the hairpin contains predominantly A and T residues and is incompletely base-paired. These loops exist in two forms, which when inverted with respect to each other are complementary in sequence. Both forms of the 104 nucleotide loop are present in nearly equimolar amounts at each end of the genome. A set of 13 tandem 70 bp repeats begins 87 bp from the proximal segment of the terminal loop, followed by a unique sequence of 325 bp, and then by a second set of 18 tandem 70 bp repeats. The sequence of the 70 bp repeats reveals a 13 bp internal redundancy. Self-priming and de novo start replication models, which involve a site-specific nick in one DNA strand proximal to the 104 nucleotide loop, account for the observed sequence inversions and incomplete base-pairing. Similar mechanisms may be involved in replication of the ends of the eucaryotic chromosome.  相似文献   

17.
O Hino  K Ohtake    C E Rogler 《Journal of virology》1989,63(6):2638-2643
Two integrated hepatitis B virus (HBV) DNA molecules were cloned from two primary hepatocellular carcinomas each containing only a single integration. One integration (C3) contained a single linear segment of HBV DNA, and the other integration (C4) contained a large inverted duplication of viral DNA at the site of a chromosome translocation (O. Hino, T.B. Shows, and C.E. Rogler, Proc. Natl. Acad. Sci. USA 83:8338-8342, 1986). Sequence analysis of the virus-cell junctions of C3 placed the left virus-cell junction at nucleotide 1824, which is at the 5' end of the directly repeated DR1 sequence and is 6 base pairs from the 3' end of the long (L) negative strand. The right virus-cell junction was at nucleotide 1762 in a region of viral DNA (within the cohesive overlap) which shared 5-base-pair homology with cellular DNA. Sequence analysis of the normal cellular DNA across the integration site showed that 11 base pairs of cellular DNA were deleted at the site of integration. On the basis of this analysis, we suggest a mechanism for integration of the viral DNA molecule which involves strand invasion of the 3' end of the L negative strand of an open circular or linear HBV DNA molecule (at the DR1 sequence) and base pairing of the opposite end of the molecule with cellular DNA, accompanied by the deletion of 11 base pairs of cellular DNA during the double recombination event. Sequencing across the inverted duplication of HBV DNA in clone C4 located one side of the inversion at nucleotide 1820, which is 2 base pairs from the 3' end of the L negative strand. Both this sequence and the left virus-cell junction of C3 are within the 9-nucleotide terminally redundant region of the HBV L negative strand DNA. We suggest that the terminal redundancy is a preferred topoisomerase I nicking region because of both its base sequence and forked structure. Such nicking would lead to integration and rearrangement of HBV molecules within the terminal redundancy, as we have observed in both our clones.  相似文献   

18.
The terminal structure of a linear plasmid pSLA2 , which was isolated from Streptomyces rochei , was analysed. The 5' ends of pSLA2 DNA were blocked by the association of a protein probably covalently bonded with the DNA. This block is removed by alkali treatment and blunt ends with 5'-phosphate and 3'-hydroxy termini were released. The two terminal fragments of pSLA2 were cloned and the nucleotide sequence was determined. An inverted terminal repetition of 614 bp was found along with the presence of further interrupted homologous sequences beyond this area up to 800 bp. These are the first inverted terminal repeat sequences found in microbial linear plasmids.  相似文献   

19.
20.
When the kinetics of Escherichia coli exonuclease III digestion of adenovirus 2 DNA were studied by DNA polymerase I-catalyzed repair synthesis at 5°C, there was an indication of the formation of hairpin structure in the single-stranded template, exposed by exonuclease III. The hairpin structure results from a sequence with an inverted repetition of the type, a b c d···d′ c′ b′ a′. The location of these sequences was determined to be about 180 nucleotides from each terminus of adenovirus 2 DNA with the use of specific restriction endonucleases. The possible role of this region in the replication of the adenovirus 2 genome is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号