首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Peroxisome proliferator-activated receptors (PPARs) are involved in the control of carbohydrate and lipid metabolism and are considered important targets to treat diabetes mellitus and metabolic syndrome. The available PPAR ligands have several side effects leading to health risks justifying the search for new bioactive ligands to activate the PPAR subtypes, in special PPARδ, the less studied PPAR isoform. Here, we used a structure-based virtual screening protocol in order to find out new PPAR ligands. From a lead-like subset of purchasable compounds, we identified 5 compounds with potential PPAR affinity and, from preliminary in vitro assays, 4 of them showed promising biological activity. Therefore, from our in silico and in vitro protocols, new PPAR ligands are potential candidates to treat metabolic diseases.  相似文献   

3.
The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPAR gamma induces hepatic steatosis, and liganded PPAR gamma promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPAR gamma function, transactivation, expression, and promoter activity. PPAR gamma transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPAR gamma ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPAR gamma-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1(-/-) fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPAR gamma ligands of PPAR gamma and PPAR gamma-responsive genes, and cyclin D1(-/-) mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPAR gamma in vivo. The inhibition of PPAR gamma function by cyclin D1 is a new mechanism of signal transduction cross talk between PPAR gamma ligands and mitogenic signals that induce cyclin D1.  相似文献   

4.
The activation of peroxisome-proliferator-activated receptor-γ (PPARγ), which plays a central role in adipocyte differentiation, depends on ligand-dependent co-activator recruitment. In this study, we developed a novel method of PPARγ ligand screening by measuring the increase in fluorescent polarization accompanied by the interaction of a fluorescent co-activator and PPARγ. Sterol receptor co-activator-1 (SRC-1), a major PPARγ co-activator, was probed by fluorescent TAMRA by the Amber codon fluorescence probe method. Polarization was increased by adding PPARγ ligands to a solution containing labeled SRC-1 (designated TAMRA-SRC-S) and PPARγ. The disassociation constants (Kd) of the PPARγ synthesized ligands, pioglitazone (221 nM), troglitazone (83.0 nM), and 15-deoxy-Δ12,14-prostaglandin J(2) (15d-ΔPGJ(2)) (156 nM), were determined by this method. Farnesol (2.89 μM) and bixin (21.1 μM), which we have reported to be PPARγ ligands, increased the fluorescent polarization. Their Kd values were in agreement with the ED(50) values obtained in the luciferase assay. The results indicate that the method is valuable for screening natural PPARγ ligands.  相似文献   

5.
Yang W  Zhang J  Wang H  Shen W  Gao P  Singh M  Fang N 《FEBS letters》2011,585(5):761-766
Peroxisome proliferator-activated receptor (PPAR) γ ligands oppose the effect induced by angiotensin II (Ang II) to reduce oxidative stress and improve antioxidant status. In this study, Ang II inhibited catalase (CAT) and peroxisome proliferator-activated receptor γ (PPAR γ) protein and mRNA expressions. Transfection with PPAR γ small-interfering RNA (siRNA) led to a reduction in CAT expression. PPAR γ ligands enhanced CAT expression and inhibited extracellular signal-regulated kinase 1/2 activation. We further reveal that Ang II type 1 receptor is not involved in the inhibitory effects of PPAR γ ligands on Ang II stimulatory events.  相似文献   

6.
Introduction of an alkylcarboxylic acid unit, which is a partial structure of endogenous peroxisome proliferator-activated receptor (PPAR) ligands, into a phenethylphenylphthalimide skeleton, which possesses liver X receptor (LXR) antagonistic activity, afforded novel PPAR ligands. The results of structure-activity relationship analysis and docking studies led us to the potent PPAR agonists 13c-e. The absolute configuration of 13c-e affects the PPAR subtype selectivity.  相似文献   

7.
Airway smooth muscle is actively involved in the inflammatory process in diseases such as chronic obstructive pulmonary disease and asthma by 1) contributing to airway narrowing through hyperplasia and hypertrophy and 2) the release of GM-CSF and G-CSF, which promotes the survival and activation of infiltrating leukocytes. Thus, the identification of novel anti-inflammatory pathways in airway smooth muscle will have important implications for the treatment of inflammatory airway disease. This study identifies such a pathway in the activation of peroxisome proliferator-activated receptors (PPARs). PPAR ligands are known therapeutic agents in the treatment of diabetes; however, their role in human airway disease is unknown. We demonstrate, for the first time, that human airway smooth muscle cells express PPAR alpha and -gamma subtypes. Activation of PPAR gamma by natural and synthetic ligands inhibits serum-induced cell growth more effectively than does the steroid dexamethasone, and induces apoptosis. Moreover, PPAR gamma activation, like dexamethasone, inhibits the release of GM-CSF. However, PPAR gamma ligands, but not dexamethasone, similarly inhibits G-CSF release. These results reveal a novel anti-inflammatory pathway in human airway smooth muscle, where PPAR gamma activation has additional anti-inflammatory effects to those of steroids. Hence, PPAR ligands might act as potential treatments in human respiratory diseases.  相似文献   

8.
Objective: This study was designed to examine the effect of peroxisome proliferator‐activated receptor‐α (PPAR‐α) ligands on the inflammatory changes induced by the interaction between adipocytes and macrophages in obese adipose tissue. Methods and Procedures: PPAR‐α ligands (Wy‐14,643 and fenofibrate) were added to 3T3‐L1 adipocytes, RAW264 macrophages, or co‐culture of 3T3‐L1 adipocytes and RAW264 macrophages in vitro, and monocyte chemoattractant protein‐1 (MCP‐1) and tumor necrosis factor‐α (TNF‐α) mRNA expression and secretion were examined. PPAR‐α ligands were administered to genetically obese ob/ob mice for 2 weeks. Moreover, the effect of PPAR‐α ligands was also evaluated in the adipose tissue explants and peritoneal macrophages obtained from PPAR‐α‐deficient mice. Results: In the co‐culture of 3T3‐L1 adipocytes and RAW264 macrophages, PPAR‐α ligands reduced MCP‐1 and TNF‐α mRNA expression and secretion in vitro relative to vehicle‐treated group. The anti‐inflammatory effect of Wy‐14,643 was observed in adipocytes treated with macrophage‐conditioned media or mouse recombinant TNF‐α and in macrophages treated with adipocyte‐conditioned media or palmitate. Systemic administration of PPAR‐α ligands inhibited the inflammatory changes in adipose tissue from ob/ob mice. Wy‐14,643 also exerted an anti‐inflammatory effect in the adipose tissue explants but not in peritoneal macrophages obtained from PPAR‐α‐deficient mice. Discussion: This study provides evidence for the anti‐inflammatory effect of PPAR‐α ligands in the interaction between adipocytes and macrophages in obese adipose tissue, thereby improving the dysregulation of adipocytokine production and obesity‐related metabolic syndrome.  相似文献   

9.
A series of dimeric PPAR agonists were designed and tested for PPAR activity in vitro. The SAR showed that dimeric ligands with a common group or full dimeric ligands had retained or even increased PPARgamma potency. The dimeric agonist concept can be used to fine tune the subtype selectivity of PPAR agonists. The PPARgamma potency could, at least partly, be explained using molecular modeling.  相似文献   

10.
11.
In the present study, we investigated the in vitro effects of peroxisome proliferator activated receptor (PPAR) ligands on PGF secretion and mRNA expression of prostaglandin F synthase (PGFS) in porcine endometrial explants collected on days 10–12 and 14–16 of the estrous cycle or pregnancy. The explants were incubated for 6 h with: PPARα ligands – WY-14643 (agonist) and MK 886 (antagonist); PPARβ ligands – l-165,041 (agonist) and GW 9662 (antagonist); PPARγ ligands – 15d-prostaglandin J2 (PGJ2, agonist), rosiglitazone (agonist) and T0070907 (antagonist). The expression of PGFS mRNA in the endometrium and the concentration of PGF in culture media were determined by real time RT-PCR and radioimmunoassay, respectively. During the estrous cycle (days 10–12 and 14–16), the agonists – WY-14643 (PPARα), l-165,041 (PPARβ), PGJ2 and rosiglitazone (PPARγ) – increased PGF secretion but did not affect PGFS mRNA abundance. During pregnancy (days 10–12 and 14–16), PPARα and PPARγ ligands did not change PGF release, whereas PPARβ agonist augmented PGF release on days 14–16 of pregnancy. In addition, WY-14643 and l-165,041 increased PGFS mRNA level in both examined periods of pregnancy. PPARγ agonist (PGJ2) and antagonist (T0070907) enhanced PGFS mRNA abundance in the endometrium on days 10–12 and 14–16 of pregnancy, respectively. The results indicate that PPARs are involved in the production of PGF by porcine endometrium, and that the sensitivity of the endometrium to PPAR ligands depends on reproductive status of animals.  相似文献   

12.
13.
14.
15.
Peroxisome proliferator-activated receptor gamma (PPAR gamma) belongs to a nuclear receptor super family that functions as a master regulator of adipocyte differentiation. PPAR gamma binds its DNA response element together with a partner, retinoid X receptor (RXR), in fat cells. Five RXR ligands (HX600, HX630, DA022, DA124, LGD1069, referred to as retinoid synergists) by themselves exhibit weak transactivation activity on the PPAR gamma response element. However, addition of PPAR gamma-specific ligand in this assay gave rise to a 5- to 13-fold increase, indicating a strong synergy between these ligands. LGD1069 was the most effective activator of the RXR/PPAR gamma heterodimer on the transactivation of the reporter gene. But, in contrast to the other four RXR ligands, LGD1069 did not show synergistic induction of ST 13 preadipocytes to adipocytes. This apparent contradiction may result from the ligand-binding property of LGD1069. In this article we discuss the fact that retinoid synergists also act as PPAR gamma synergists.  相似文献   

16.
17.
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor with an important role in the glucose metabolism and a target for type 2 diabetes mellitus therapy. The recent findings relating the use of the receptor full agonist rosiglitazone and the incidence of myocardial infarction raised concerns regarding whether receptor activation can actually be useful for diabetes management. The discovery of MRL-24 and GQ-16, ligands that can partially activate PPARγ and prevent weight gain and fluid retention, showed that a submaximal receptor activation can be a goal in the development of new ligands for PPARγ. Additionally, two previously described receptor antagonists, SR-202 and BADGE, were also shown to improve insulin sensitivity and decrease TNF-α level, revealing that receptor antagonism may also be an approach to pursue. Here, we used a structure-based approach to screen the subset ‘Drugs-Now’ of ZINC database. Fifteen ligands were selected after visual inspection and tested for their ability to bind to PPARγ. A benzoimidazol acetate, a bromobenzyl-thio-tetrazol benzoate and a [[2-[(1,3-dioxoinden-2-ylidene)methyl]phenoxy]methyl]benzoate were identified as PPARγ ligands, with IC50 values smaller than 10 μM. Molecular dynamic simulations showed that the residues H323, H449, Y327, Y473, K367 and S289 are key structural elements for the molecular recognition of these ligands and the polar arm of PPARγ binding pocket.  相似文献   

18.
In our search for a novel class of non-TZD, non-carboxylic acid peroxisome proliferator-activated receptor (PPAR) γ agonists, we explored alternative lipophilic templates to replace benzylpyrazole core of the previously reported agonist 1. Introduction of a pentylsulfonamide group into arylpropionic acids derived from previous in-house PPARγ ligands succeeded in the identification of 2-pyridyloxybenzene-acylsulfonamide 2 as a lead compound. Docking studies of compound 2 suggested that a substituent para to the central benzene ring should be incorporated to effectively fill the Y-shaped cavity of the PPARγ ligand-binding domain (LBD). This strategy led to significant improvement of PPARγ activity. Further optimization to balance in vitro activity and metabolic stability allowed the discovery of the potent, selective and orally efficacious PPARγ agonist 8f. Structure-activity relationship study as well as detailed analysis of the binding mode of 8f to the PPARγ-LBD revealed the essential structural features of this series of ligands.  相似文献   

19.
20.
Peroxisome proliferator-activated receptors (PPAR) and retinoid X receptors (RXR) are implicated in the development of several obesity-related cancers. Little is known of either the expression or function of PPARs and RXRs in endometrial cancer although this increasingly common disease is highly associated with both obesity and insulin resistance. We investigated the expression of PPAR and RXR subtypes in human endometrial cancers and normal endometrium with immunoblotting and immunohistochemistry and subsequently showed PPAR/RXR binding preferences by coimmunoprecipitation. To determine the functions of PPARs within the endometrium, we investigated proliferation, apoptosis, PTEN expression, and secretion of vascular endothelial growth factor (VEGF) in endometrial cell lines after reducing the expression of PPARα and PPARγ with antisense RNA. The functional effects of PPAR ligands were also investigated in vitro. We identified differential expression of PPAR and RXR subtypes in endometrial cancers and discovered that PPARγ expression correlated with expression of PTEN. PPARα activation influences endometrial cell growth and VEGF secretion. PPARγ activation reduces proliferation of endometrial cells via regulation of PTEN and appears to reduce VEGF secretion. We conclude that the PPAR/RXR pathway contribute to endometrial carcinogenesis by control of PTEN expression and modulation of VEGF secretion. We propose that PPAR ligands should be considered for clinical investigation in early phase studies of women with endometrial cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号