首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Massey JB  Pownall HJ 《Biochemistry》2005,44(30):10423-10433
7-Ketocholesterol is an oxidized derivative of cholesterol with numerous physiological effects. In model membranes, 7-ketocholesterol and cholesterol were compared by physical measures of bilayer order and polarity, formation of detergent resistant domains (DRM), phase separation, and membrane microsolubilization by apolipoprotein A-I. In binary mixtures of a saturated phosphatidylcholine (PC), dipalmitoyl-PC (DPPC), and cholesterol or 7-ketocholesterol, the sterols modulate bilayer order and polarity and induce DRM formation to a similar extent. Cholesterol induces formation of ordered lipid domains (rafts) in tertiary mixtures with dioleoyl-PC (DOPC) and DPPC, or DOPC and sphingomyelin (SM). In tertiary mixtures, cholesterol increased lipid order and reduces bilayer polarity more than 7-ketocholesterol. This effect was more pronounced when the mixtures were in a miscible liquid-disordered (L(d)) phase. Substitution of 7-ketocholesterol for cholesterol dramatically reduced the extent of DRM formation in DOPC/DPPC and DOPC/SM bilayers and ordered lipid phase separation in mixtures of a spin-labeled PC with DPPC and with SM. Compared to cholesterol, 7-ketocholesterol decreased the rate for the microsolubilization of dimyristoyl-PC multilamellar vesicles by apolipoprotein A-I. The membrane effects of 7-ketocholesterol were dependent on the phospholipid matrix. In L(d) phase phospholipids, a model for 7-ketocholesterol indicates that the proximity of the 7-keto and 3beta-OH groups puts both polar moieties at the lipid-water interface to tilt the sterol nucleus to the plane of the bilayer. 7-Ketocholesterol was less effective in forming ordered lipid domains, in decreasing the level of bilayer hydration, and in forming phase boundary bilayer defects. Compared to cholesterol, 7-ketocholesterol can differentially modulate membrane properties involved in protein-membrane association and function.  相似文献   

2.
Deuterium magnetic resonance spectra (55.26 MHz) of cholesterol-3 alpha-d1 and epicholesterol-3 beta-d1 in dipalmitoylglycerophosphocholine (DPPC) liposomes were measured as a function of sterol-to-phospholipid ratio below (24 degrees C) and above (60 degrees C) the phase transition temperature of DPPC. From the quadrupolar splittings delta vq, the molecular order parameters S describing the motions of the sterols in the bilayer were calculated, and the most probable angle of tilt alpha 0 of the molecular axis of the sterols relative to the bilayer normal was determined. We observed that the molecular axis of cholesterol in DPPC liposomes at both 24 and 60 degrees C is tilted at an angle of 16-19 degrees with the 3 beta-hydroxyl group projecting parallel to the bilayer normal into the aqueous interface. In contrast, at 24 degrees C, epicholesterol is aligned parallel (0 degrees) to the bilayer normal, placing the 3 alpha-hydroxyl group essentially perpendicular to the bilayer normal along the aqueous interface. At 60 degrees C, the average angle of epicholesterol (16-18 degrees) is similar to that of cholesterol, which can project the 3 alpha-hydroxyl group into the hydrophobic bilayer region. On the basis of the observed tilt angles of the two isomeric sterols in DPPC liposomes, a model is proposed that can rationalize the differential effects of cholesterol and epicholesterol on membrane properties.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A method originally proposed by Snyder and Poore [(1973) Macromolecules 6, 708-715] as a specific probe of trans-gauche isomerization in hydrocarbon chains and recently applied [Mendelsohn et al. (1989) Biochemistry 28, 8934-8939] to the quantitative determination of phospholipid acyl chain conformational order is utilized to monitor the effects of cholesterol at various depths in dipalmitoylphosphatidylcholine (DPPC) bilayers. The method is based on the observation that the CD2 rocking modes from the acyl chains of specifically deuterated phospholipids occur at frequencies in the Fourier transform infrared spectrum which depend upon the local geometry (trans or gauche) of the C-C-C skeleton surrounding a central CD2 group. Three specifically deuterated derivatives of DPPC, namely, 4,4,4',4'-d4 DPPC (4-d4 DPPC), 6,6,6',6'-d4 DPPC (6-d4 DPPC), and 12,12,12',12'-d4 DPPC (12-d4 DPPC), have been synthesized, and the effects of cholesterol addition at 2:1 DPPC/cholesterol (mol:mol) on acyl chain order at various temperatures have been determined. At 48 degrees C, cholesterol inhibits gauche rotamer formation by factors of approximately 9 and approximately 6 at positions 6 and 4, respectively, of the acyl chains, thus demonstrating a strong ordering effect in regions of the bilayer where the sterol rings are presumed to insert parallel to the DPPC acyl chains. In contrast, the ability of the sterol to order the acyl chains is much reduced at the 12-position. The sterol demonstrates only a slight disordering of phospholipid gel phases. Finally, the contributions of different classes of gauche conformers to the spectra have been determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Wang J  Megha  London E 《Biochemistry》2004,43(4):1010-1018
The formation and stability of ordered lipid domains (rafts) in model membrane vesicles were studied using a series of sterols and steroids structurally similar to cholesterol. In one assay, insolubility in Triton X-100 was assessed in bilayers composed of sterol/steroid mixed with dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine, or a 1:1 mixture of these phospholipids. In a second assay fluorescence quenching was used to determine the degree of ordered domain formation in bilayers containing sterol/steroid and a 1:1 mixture of DPPC and a quencher-carrying phosphatidylcholine. Both methods showed that several single modifications of the cholesterol structure weaken, but do not fully abolish, the ability of sterols and steroids to promote ordered domain formation when mixed with DPPC. Some of these modifications included a shift of the double bond from the 5-6 carbons (cholesterol) to 4-5 carbons (allocholesterol), derivatization of the 3-OH (cholesterol methyl ether, cholesteryl formate), and alteration of the 3-hydroxy to a keto group (cholestanone). An oxysterol involved in atherosclerosis, 7-ketocholesterol, formed domains with DPPC that were as thermally stable as those with cholesterol although not as tightly packed as judged by fluorescence anisotropy. It was also found that 7-ketocholesterol has fluorescence quenching properties making it a useful spectroscopic probe. Lathosterol, which has a 7-8 carbon double bond in place of the 5-6 double bond of cholesterol, formed rafts with DPPC that were at least as detergent-resistant as, and even more thermally stable than, rafts containing cholesterol. Because lathosterol is an intermediate in cholesterol biosynthesis, we conclude it is unlikely that sterol biosynthesis continues past lathosterol in order to create a raft-favoring lipid.  相似文献   

5.
Perturbations induced by ethylazinphos on the physical organization of dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol membranes were studied by differential scanning calorimetry (DSC) and fluorescence polarization of 2-, 6-, 12-(9-anthroyloxy) stearic acids and 16-(9-anthroyloxy) palmitic acid. Ethylazinphos (50 and 100 microM) increases the fluorescence polarization of the probes, either in the gel or in the fluid phase of DPPC bilayers, and this concentration dependent effect decreases from the surface to the bilayer core. Additionally, the insecticide displaces the phase transition to a lower temperature range and broadens the transition profile of DPPC. A shifting and broadening of the phase transition is also observed by DSC. Furthermore at insecticide/lipid molar ratios higher than 1/7, DSC thermograms, in addition to the normal transition centered at 41 degrees C, also display a new phase transition centered at 45.5 degrees C. The enthalpy of this new transition increases with insecticide concentration, with a corresponding decrease of the main transition enthalpy. Ethylazinphos in DPPC bilayers with low cholesterol (< or = 20 mol%) perturbs the membrane organization as described above for pure DPPC. However, cholesterol concentrations higher than 20 mol% prevent insecticide interaction, as revealed by fluorescence polarization and DSC data. Apparently, cholesterol significantly modulates insecticide interaction by competition for similar distribution domains in the membrane. The present results strongly support our previous hypothesis that ethylazinphos locates in the cooperativity region, i.e. the region of C1-C9 atoms of the acyl chains, and extends to the lipid-water interface, where it increases lipid packing order sensed across all the thickness of the bilayer. Additionally, and, on the basis of DSC data, a lateral regionalization of ethylazinphos is here tentatively suggested.  相似文献   

6.
The interactions with and effects of five chemically distinct, bioactive phenolic compounds on the lipid bilayers of model dipalmitoylphosphatidylcholine (DPPC) liposomes were investigated. Complementary analytical techniques, including differential scanning calorimetry (DSC) and phosphorus and proton nuclear magnetic resonance spectroscopy (NMR), were employed in order to determine the location of the compounds within the bilayer and to correlate location with their effects on bilayer characteristics and liposomal stability. As compared to the phenolic compounds localized in the glycerol region of the DPPC head group within the bilayer, which enhanced the colloidal stability of the liposomes, compounds located closer to the center of the bilayer reduced vesicle stability as a function of time. Molecules present in the upper region of liposomal DPPC acyl chains (C1–C10) inhibited liposomal aggregation and size increase, perhaps due to tighter packing of adjoining DPPC molecules and increased surface exposure of DPPC phosphate head groups. These data may be useful for designing liposomal systems containing hydrophobic phenols and other small molecules, selecting appropriate analytical methods for determining their location within liposomal bilayers, and predicting their effects on liposome characteristics early in the liposome formulation development process.  相似文献   

7.
The properties of dipalmitoylphosphatidylcholine (DPPC):6-ketocholestanol bilayer at 50 mol% sterol were studied using the molecular dynamics simulation technique. Our simulations were performed at constant pressure and temperature on a nanosecond time scale. Data from this simulation were compared to the results of our previous simulations on DPPC and DPPC-cholesterol bilayers. We conclude that the differences in the properties of membranes with cholesterol and ketocholestanol are due to the difference in 6-ketocholestanol and cholesterol location in the bilayer. The presence of the keto group in ketocholestanol moves the sterol towards the polar region closer to interface with water. We predict that similar mechanisms would govern the properties of membranes with other oxygenated sterols, such as for example 7-ketocholesterol. Results of our simulations are in a good agreement with the data available from the experiment.  相似文献   

8.
Phosphatidylserine (PS) extracted from pig brain and synthetic dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were used to make DPPC/DMPC and DPPC/PS large unilamellar liposomes with a diameter of approximately 1 microm. Chlorpromazine-HCl (CPZ), an amphipathic cationic psychotropic drug of the phenothiazine group, is known to partition into lipid bilayer membranes of liposomes with partition coefficients depending on the acyl chain length and to alter the bilayer structure in a manner depending on the phospholipid headgroups. The effects of adding CPZ to these membranes were studied by differential scanning calorimetry and proton cross polarization solid state magic angle spinning (13)C-nuclear magnetic resonance spectroscopy (CP-MAS-(13)C-NMR). CP-MAS-(13)C-NMR spectra of the DPPC (60%)/DMPC (40%) and the DPPC (54%)/DMPC (36%)/CPZ (10%) liposomes, show that CPZ has low or no interaction with the phospholipids of this neutral and densely packed bilayer. Conversely, the DPPC (54%)/PS (36%)/CPZ (10%) bilayer at 25 degrees C demonstrates interaction of CPZ with the phospholipid headgroups (PS). This CPZ interaction causes about 30% of the acyl chains to enter the gauche conformation with low or no CPZ interdigitation among the acyl chains at this temperature (25 degrees C). The DPPC (54%)/PS (36%)/CPZ (10%) bilayer at a sample temperature of 37 degrees C (T(C)=31.2 degrees C), shows CPZ interdigitation among the phospholipids as deduced from the finding that approximately 30% of the phospholipid acyl chains carbon resonances shift low-field by 5-15 ppm.  相似文献   

9.
Mixed film studies of the systems cholesterol/tetradecanoic acid and cholesterol/dipalmitoylphosphatidylcholine have been carried out over the entire compositional range at 21°C. When compared on an acyl chain basis the condensing effects were found to be essentially independent of which host-lipid was utilized. The phase change of the host lipid was shifted to higher pressures, then broadened and eliminated. Maximal condensation occurred at just above 42 mol% for the cholesterol/DPPC system. In both systems the two components were initially found to be miscible at all proportions.The results are interpreted in terms of the molecular packing of cholesterol with acyl boundary layers, one significantly, one weakly affected. Maximum condensation is a result of packing that provides maximum cholesterol/acyl chain contact. Consideration is given to both long term stability of such mixed monolayers and the behaviour of the corresponding bilayer states.  相似文献   

10.
The typical plant sterols (sitosterol, stigmasterol and campesterol) were compared with respect to their ability to regulate membrane fluidity of soybean phosphatidylcholine (PC) vesicles. Fluidity changes were monitored by the steady-state fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene as a probe and assigned to a measure of the acyl chain orientational order. Sitosterol and campesterol appear to be the most suitable sterols in ordering the acyl chains of soybean lecithin bilayers, even more efficient than cholesterol, the standard of reference for sterol effects on membranes, suggesting that they play a significant role in the regulation of plant membrane properties. Stigmasterol is shown to be much less active. Cycloartenol, a biosynthetic precursor of plant sterols, increases the acyl chain order with the same efficiency as cholesterol. We also investigated the effects of two unusual sterols, 24-methylpollinastanol and 14 alpha,24-dimethylcholest-8-en-3 beta-ol, which were shown to accumulate in plants treated with fungicides belonging to two important classes, N-substituted morpholines and triazoles, respectively. These two sterols exhibit a behavior very similar to that of stigmasterol. The results are discussed in terms of sterol effects on the molecular packing of soybean PC bilayers.  相似文献   

11.
Ceramides (Cers) may exert their biological activity through changes in membrane structure and organization. To understand this mechanism, the effect of Cer on the biophysical properties of phosphatidylcholine, sphingomyelin (SM) and SM/cholesterol bilayers was determined using fluorescence probe techniques. The Cers were bovine brain Cer and synthetic Cers that contained a single acyl chain species. The phospholipids were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glyero-3-phosphocholine (DPPC) and bovine brain, egg yolk and bovine erythrocyte SM. The addition of Cer to POPC and DPPC bilayers that were in the liquid-crystalline phase resulted in a linear increase in acyl chain order and decrease in membrane polarity. The addition of Cer to DPPC and SM bilayers also resulted in a linear increase in the gel to liquid-crystalline phase transition temperature (T(M)). The magnitude of the change was dependent upon Cer lipid composition and was much higher in SM bilayers than DPPC bilayers. The addition of 33 mol% cholesterol essentially eliminated the thermal transition of SM and SM/Cer bilayers. However, there is still a linear increase in acyl chain order induced by the addition of Cer. The results are interpreted as the formation of DPPC/Cer and SM/Cer lipid complexes. SM/Cer lipid complexes have higher T(M)s than the corresponding SM because the addition of Cer reduces the repulsion between the bulky headgroup and allows closer packing of the acyl chains. The biophysical properties of a SM/Cer-rich bilayer are dependent upon the amount of cholesterol present. In a cholesterol-poor membrane, a sphingomyelinase could catalyze the isothermal conversion of a liquid-crystalline SM bilayer to a gel phase SM/Cer complex at physiological temperature.  相似文献   

12.
K Tu  M L Klein    D J Tobias 《Biophysical journal》1998,75(5):2147-2156
We report a 1.4-ns constant-pressure molecular dynamics simulation of cholesterol at 12.5 mol% in a dipalmitoylphosphatidylcholine (DPPC) bilayer at 50 degrees C and compare the results to our previous simulation of a pure DPPC bilayer. The interlamellar spacing was increased by 2.5 A in the cholesterol-containing bilayer, consistent with x-ray diffraction results, whereas the bilayer thickness was increased by only 1 A. The bilayer/water interface was more abrupt because the lipid headgroups lie flatter to fill spaces left by the cholesterol molecules. This leads to less compensation by the lipid headgroups of the oriented water contribution to the membrane dipole potential and could explain the experimentally observed increase in the magnitude of the dipole potential by cholesterol. Our calculations suggested that 12.5 mol% cholesterol does not significantly affect the conformations and packing of the hydrocarbon chains and produces only a slight reduction in the empty free volume. However, cholesterol has a significant influence on the subnanosecond time scale lipid dynamics: the diffusion constant for the center-of-mass "rattling" motion was reduced by a factor of 3, and the reorientational motion of the methylene groups was slowed along the entire length of the hydrocarbon chains.  相似文献   

13.
Sterol molecules are essential for maintaining the proper structure and function of eukaryotic cell membranes. The influence of cholesterol (the principal sterol of higher animals) on the lipid bilayer properties was extensively studied by both experimental and simulation methods. In contrast, the effect of ergosterol (the principal fungal sterol) on the membrane structure and dynamics is much less recognized. This work presents the results of comparative molecular dynamics simulation of the hydrated dimyristoylphosphatidylcholine bilayer containing approximately 25 mol % of cholesterol or ergosterol. A detailed analysis of the molecular properties (e.g., bilayer thickness, lipid order, diffusion, intermolecular interactions, etc.) of both sterol-induced liquid-ordered membrane phases is presented. Presence of sterols in the membrane significantly changes its property, especially fluidity and molecular packing. Moreover, in accordance with the experiments, our calculations show that, compared to cholesterol, ergosterol has higher ordering effect on the phospholipid acyl chains. This different influence on the properties of the lipid bilayer stems from differences in conformational freedom of sterol side chains. Additionally, obtained models of lipid membranes containing human and fungal sterols, constituting the result of our work, can be also utilized in other chemotherapeutic studies on interaction of selected ligands (e.g., antifungal compounds) with membranes.  相似文献   

14.
Acholeplasma laidlawii was grown with different fatty acids for membrane lipid synthesis (saturated straight- and branched-chain acids and mono- and di-unsaturated acids). The ability of 12 different sterols to affect cell growth, lipid head group composition, the order parameter of the acyl chains, and the phase equilibria of in vivo lipid mixtures was studied. The following two effects were observed with respect to cell growth: with a given acyl chain composition of the membrane lipids, growth was stimulated, unaffected, reduced, or completely inhibited (lysis), depending on the sterol structure; and the effect of a certain sterol depended on the acyl chain composition (most striking for epicoprostanol, cholest-4-en-3-one, and cholest-5-en-3-one, which stimulated growth with saturated acyl chains but caused lysis with unsaturated chains). The three lytic sterols were the only sterols that caused a marked decrease in the ratio between the major lipids monoglucosyldiglyceride and diglucosyldiglyceride and hence a decrease in bilayer stability when the membranes were enriched in saturated (palmitoyl) chains. With these chains correlations were found for several sterols between the glucolipid ratio and the order parameter of the acyl chains, as well as the lamellar-reversed hexagonal phase transition, in model systems. A shaft experiment revealed a marked decrease in the ratio of monoglucosyldiglyceride to diglucosyldiglyceride with the lytic sterols in unsaturated (oleoyl) membranes. The two cholestenes induced nonlamellar phases in in vivo mixtures of oleoyl A. laidlawii lipids. The order parameters of the oleoyl chains were almost unaffected by the sterols. Generally, the observed effects cannot be explained by an influence of the sterols on the gel-to-liquid crystalline phase transition.  相似文献   

15.
Xu X  London E 《Biochemistry》2000,39(5):843-849
Detergent-insoluble membrane domains, enriched in saturated lipids and cholesterol, have been implicated in numerous biological functions. To understand how cholesterol promotes domain formation, the effect of various sterols and sterol derivatives on domain formation in mixtures of the saturated lipid dipalmitoylphosphatidylcholine (DPPC) and a fluorescence quenching analogue of an unsaturated lipid was compared. Quenching measurements demonstrated that several sterols (cholesterol, dihydrocholesterol, epicholesterol, and 25-hydroxycholesterol) promote formation of DPPC-enriched domains. Other sterols and sterol derivatives had little effect on domain formation (cholestane and lanosterol) or, surprisingly, strongly inhibit it (coprostanol, androstenol, cholesterol sulfate, and 4-cholestenone). The effect of sterols on domain formation was closely correlated with their effects on DPPC insolubility. Those sterols that promoted domain formation increased DPPC insolubility, whereas those sterols that inhibit domain formation decreased DPPC insolubility. The effects of sterols on the fluorescence polarization of diphenylhexatriene incorporated into DPPC-containing vesicles were also correlated with sterol structure. These experiments indicate that the effect of sterol on the ability of saturated lipids to form a tightly packed (i.e., tight in the sense that the lipids are closely packed with one another) and ordered state is the key to their effect on domain formation. Those sterols that promote tight packing of saturated lipids promote domain formation, while those sterols that inhibited tight packing of saturated lipids inhibited domain formation. The ability of some sterols to inhibit domain formation (i.e., act as "anti-cholesterols") should be a valuable tool for examining domain formation and properties in cells.  相似文献   

16.
The membrane properties of cholesterol auto-oxidation products, 7-ketocholesterol, 7 beta-hydroxycholesterol, 7 alpha-hydroxycholesterol and 25-hydroxycholesterol were examined. Monolayer studies show that these oxysterols are perpendicularly orientated at the interphase. Only 7 beta-hydroxycholesterol and 7 alpha-hydroxycholesterol are tilted at low surface pressures. In mixed monolayers with dioleoylphosphatidylcholine, 7-ketocholesterol, 7 beta-hydroxycholesterol and 7 alpha-hydroxycholesterol show a condensing effect in this order, although to a lesser extent that that observed for cholesterol. In liposomes these oxysterols also reduce glucose permeability and in the same order as their condensing effect. On the other hand 25-hydroxycholesterol shows no condensing effect in monomolecular layers whereas glucose permeability in liposomes is enormously increased. The permeability increase is already maximal at 2.5 mol% 25-hydroxycholesterol. Differential scanning calorimetry experiments reveal that all four oxysterols tested reduce the heat content of the gel----liquid-crystalline phase transition. It is concluded that 7-ketocholesterol, 7 beta-hydroxycholesterol and 7 alpha-hydroxycholesterol have a cholesterol like effect, although less efficient than cholesterol, whereas 25-hydroxycholesterol showing no condensing effect acts as a spacer molecule. Packing defects in the hydrophobic core of the bilayer due to the presence of the C-25 hydroxyl group are believed to cause the permeability increase. The transfer of radiolabelled (oxy)sterols from the monolayer to lipoproteins or vesicles in the subphase was studied. The transfer rate increases in the following order 7-ketocholesterol, 7 beta-hydroxycholesterol, 7 alpha-hydroxycholesterol, 25-hydroxycholesterol. The difference in rate between 7-ketocholesterol and 25-hydroxycholesterol is 20-fold. A higher rate of transfer is observed in the presence of high density lipoproteins and small unilamellar vesicles. A transfer rate for cholesterol is hardly measurable under these conditions. The transfer measured is consistent with the involvement of a water-soluble intermediate.  相似文献   

17.
18.
Both wide-angle and lamellar x-ray diffraction data are interpreted in terms of a difference in hydrocarbon chain tilt between fully hydrated dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE). Although the hydrocarbon chains of multilayers of DPPC tilt ty approximately 30 degrees relative to the normal to the plane of the bilayer, as previously reported by others, the hydrocarbon chains of DPPE appear to be oriented approximately normal to the plane of the bilayer. It is found that the chain tilt in DPPC bilayers can be reduced by either: (a) adding an n-alkane to the bilayer interiors or (b) adding lanthanum ions to the fluid layers between bilayers. A molecular packing model is presented which accounts for these data. According to this model, DPPC chains tilt because of the size and conformation of the PC polar head group.  相似文献   

19.
The influence of monovalent cations and anions on the structural parameters of dipalmitoylphosphatidylcholine (DPPC) bilayers was examined at 25 degrees C using X-ray diffraction. It was shown that monovalent salts, in general, have little effect on lipid packing within the bilayer. However, fully hydrated DPPC bilayers in 1 M KSCN pack in an interdigitated acyl chain phase. This is the first observation of an ion-induced interdigitated bilayer phase in a zwitterionic lipid. In addition, gel state DPPC bilayers in 1 M KBr imbibe approx. 10 A more solvent than bilayers in water. The influence of these same salts on the phase transitions of DPPC bilayers was also examined using high-resolution differential scanning calorimetry. These results are discussed in terms of ion-induced changes in solvent and solvent/bilayer structure.  相似文献   

20.
We report a grazing incidence X-ray diffraction (GIXD) study of pure and mixed Langmuir monolayers of tetramyristoyl cardiolipin (TMCL) and dipalmitoylphosphatidylcholine (DPPC) at 22 degrees C. The mixing behavior of the two components was investigated at two different surface pressures, 4 and 25mNm(-1). Cardiolipins are found to be in a liquid-condensed (LC) phase at 4mNm(-1) whereas the DPPC molecules appear disordered. At 25mNm(-1), cardiolipins are in a solid phase with their aliphatic chains perpendicular to the interface whereas the DPPC molecules are in the LC phase. At this surface pressure, increasing the amounts of TMCL to DPPC leads to a reduction in tilt angle of the aliphatic chains from nearly 30 degrees for pure DPPC to almost 0 degrees in a 1:1 molar ratio of DPPC and TMCL. At this composition, we also found the closest packing of the aliphatic chains. Further increase of the amount of TMCL does not change the lattice or the tilt and the thermodynamic analysis confirms a partial phase separation. Such a behavior was not observed at 4mNm(-1) where the two phospholipids are miscible at all the compositions studied. Addition of TMCL clearly induces a structuring of the mixed monolayers and increases order by a tight packing in the lipid acyl chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号