首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gossypol, a polyphenolic aldehyde, inhibits steroidogenesis and the reproductive system in both sexes. The present study was undertaken to investigate whether gossypol may affect progesterone biosynthesis in cultured porcine granulosa cells isolated from small (1-2 mm) follicles (SGC). SGC were cultured with gossypol, NO donor S-nitroso-N-acetylpenicillamine (S-NAP) or the specific NO-synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME), in the presence or absence of follicular fluid isolated from large (5-8 mm) follicles (LFF) or conditioned media (CM) of granulosa cells isolated from large follicles (LGC). Gossypol enhanced the nitrite content in culture media of SGC and inhibited basal progesterone secretion by SGC. S-NAP (10(-3) M) inhibited progesterone secretion and enhanced the formation of cGMP by SGC. L-NAME had no effect on progesterone accumulation by SGC. The stimulatory effect of LFF or CM media on progesterone production by SGC in culture was also inhibited by S-NAP (10(-3)) and gossypol (10(-4) M). Moreover, gossypol inhibited forskolin-stimulated progesterone secretion, as well as substrate-enhanced conversion of 22-OH-cholesterol and pregnenolone to progesterone. These results suggest that the inhibitory effect of gossypol on progesterone secretion in culture of SGC may be mediated via NO generation.  相似文献   

2.
In Experiment 1, the influence of exogenous GH on steroid secretion by granulosa and theca interna cells recovered from small (1-3 mm), medium (4-6 mm) and large (8-12 mm) follicles was tested. In the second experiment, theca cells (Tc) and granulosa cells (Gc) obtained from large follicles were cultured separately or in two types, Tc/Gc co-culture, where both types of cells were mixed in one well or Gc and Tc were separated by cell culture membrane inserts. In the third experiment, the influence of GH on the morphology of Gc and Tc cells and activity of Delta(5),3beta-hydroxysteroid dehydrogenase (3beta-HSD) was studied. Cells were grown in the control medium (M199+5% of calf serum) or supplemented with 100 ng/ml GH. Testosterone (10(-7) M) was added as the aromatase substrate to granulosa cells cultures. The media were assayed after 48 h of culture for progesterone and oestradiol by RIA. GH added to the culture media had no effect on oestradiol and progesterone secretion by granulosa cells isolated from small and medium follicles while it stimulated both oestradiol and progesterone secretion by Gc isolated from large preovulatory follicles. A stimulatory effect on oestradiol secretion by Tc isolated from all size follicles was observed. GH did not stimulate progesterone secretion by Tc isolated from small follicles but stimulated progesterone secretion by Tc isolated from medium and large preovulatory follicles. Both co-culture systems exhibited synergistic effect on oestradiol secretion. The stimulatory effect on progesterone secretion under the influence of GH was observed in Gc cultured alone and Tc cultured alone. In contrast, the secretion of progesterone was attenuated in both co-culture systems and the addition of GH further augmented this attenuation. A statistically significant increase in oestradiol secretion was observed in all culture conditions. The addition of GH to the culture medium stimulated the activity of 3beta-HSD compared with the control culture from both types of cells. In conclusion, the present studies indicate that there are direct and follicular development stage dependent actions of GH on steroidogenesis of porcine follicular cells.  相似文献   

3.
Follicular fluid from porcine antral follicles stimulates progesterone secretion by porcine granulosa cells from small antral follicles in vitro. Fluid from large (6-12 mm) follicles has more stimulatory activity than fluid from smaller follicles. In this study, we have examined the action of charcoal-treated and filtered follicular fluid on 3 beta-hydroxysteroid dehydrogenase activity (3 beta-HSD) and the ability of exogenous pregnenolone to increase progesterone secretion. Granulosa cells cultured with 30% follicular fluid in TC 199 (v/v) for 3 days were less dependent on the presence of exogenous pregnenolone to enhance their progesterone secretion and exhibited more 3 beta-HSD activity than control cells incubated in 30% serum in TC 199. The apparent Vmax of 3 beta-HSD was increased 80% in follicular fluid-treated cells over that observed in controls (4.8 vs. 2.6 nM/min/100 mg protein) whereas the apparent Kms for 3 beta-HSD were similar (1.3 +/- 0.34 microM) in both experimental and control cells.  相似文献   

4.
Treatment of isolated amphibian ovarian follicles with frog pituitary homogenate (FPH) increases follicular progesterone levels, which, in turn, initiate oocyte maturation. Recent studies have demonstrated that follicular progesterone production requires concomitant protein synthesis at some stage preceding pregnenolone formation. Experiments were carried out to determine whether cholesterol metabolism plays a role in mediating these biochemical and physiological processes. Aminoglutethimide (AGI, and inhibitor of P450 side-chain cleavage enzyme) inhibited FPH-induced intrafollicular progesterone accumulation and oocyte maturation (or germinal vesicle breakdown, GVBD) in a dose-dependent manner. Follicular progesterone accumulation and GVBD were both stimulated, in the absence of FPH, after addition of 25-OH-cholesterol, but not cholesterol, to the culture medium. Higher levels of progesterone were present in defolliculated oocytes as compared to intact ovarian follicles after incubation with 25-OH-cholesterol. The results indicate that the surface epithelium and theca layer in the follicle wall retard 25-OH-cholesterol access to steroid-producing follicle cells. AGI blocked 25-OH-cholesterol-induced accumulation of progesterone and GVBD in defolliculated oocytes, suggesting that 25-OH-cholesterol does not directly induce GVBD and is metabolized by the follicle cells. The capacity of follicles to accumulate progesterone following preincubation with FPH or 25-OH-cholesterol along with AGI was compared. Intrafollicular levels of progesterone increased after AGI- and 25-OH-cholesterol-treated follicles were washed. In contrast, progesterone levels decreased in follicles pretreated with AGI and FPH after washing. The results indicate that considerable 25-OH-cholesterol, but not endogenous cholesterol (FPH stimulation), remains available for steroidogenesis after removal of AGI. A significant, but incomplete, inhibition of progesterone accumulation occurred when follicles were incubated in the presence of 25-OH-cholesterol and cycloheximide. This partial blockage produced by the protein synthesis inhibitor indicates that some basal protein synthesis is required for progesterone accumulation from exogenous 25-OH-cholesterol. We conclude that intracellular cholesterol stores in the follicle wall are utilized to mediate FPH induction of progesterone accumulation and oocyte maturation in amphibian follicles.  相似文献   

5.
Bovine theca and granulosa cells interact to promote androgen production   总被引:1,自引:0,他引:1  
Pieces of theca interna or follicle wall (theca interna + attached granulosa cells), obtained from bovine preovulatory follicles prior to the surge of luteinizing hormone (LH) and cultured for 3 days, secreted androstenedione. Luteinizing hormone, but not follicle-stimulating hormone (FSH), increased production of androstenedione 3 to 4-fold. In both the presence and absence of LH, follicle wall preparations secreted about 4-fold more androstenedione than did equivalent amounts of theca interna tissue. Isolated granulosa cells produced only negligible quantities of androstenedione, which suggests that they may contribute to the greater production of androstenedione by follicle wall by supplying progestin precursor to the theca cells. The addition of pregnenolone or progesterone to isolated theca interna increased the secretion of androstenedione, but pregnenolone was by far the more effective precursor. This suggested that the delta 5 (delta 5) pathway is the preferred pathway for androstenedione synthesis by bovine theca cells and that granulosa cells might supply progestin precursor in the form of pregnenolone. Follicle wall and granulosa cell cultures secreted 2 and 7 times more pregnenolone, respectively, than did theca cultures. Luteinizing hormone, but not FSH, increased production of pregnenolone by the follicle wall, whereas the gonadotropins had no effect on secretion by either granulosa or theca cells. Since exogenous testosterone enhanced the production of pregnenolone by granulosa cells, thecal androgen (which is stimulated by LH) may increase the ability of granulosa cells to make pregnenolone and explain the stimulatory effect of LH on pregnenolone secretion by follicle wall.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The role of granulosa cell conditioned media (CM) containing luteinization stimulator (LS), and the role of EGF in the cumulus expansion of oocyte-cumulus complexes (OCC) isolated from large antral follicles was investigated. The CM were prepared by incubation of granulosa cells isolated from large antral follicles. After 24h incubation, more than 61 or 64% of OCC expanded to the +3 and +4 stage in the presence of CM (50%) or EGF (10ng/ml), respectively. The stimulatory effect of LS and EGF on the cumulus expansion was accompanied by the enhanced hyaluronic acid synthesis. Complete suppression of cumulus expansion stimulated by LS and EGF was observed in the presence of 10 micromol/l genistein (tyrosine kinase inhibitor), in the presence of 10mmol/l LiCl (the inhibitor of inositol 1,4,5-trisphosphate metabolism), and 100 micromol/l gallopamil, verapamil and norverapamil (calcium channel blockers). Stimulatory effect of EGF on the cumulus expansion of OCC isolated from large follicles was accompanied by the increased cumulus cell progesterone production. However, EGF did not affect the progesterone production by OCC isolated from small follicles. To determine whether EGF could modulate the granulosa cell steroidogenesis also, the effect of EGF on granulosa cells isolated from large (LGC) and small (SGC) follicles was compared. EGF (10ng/ml) failed to affect the progesterone synthesis during 72h culture of SGC but significantly enhanced the LGC progesterone production. Our results indicate that luteinization factor stimulates the cumulus expansion and hyaluronic acid synthesis by the OCC isolated from large antral follicles. The mechanism of LS- and EGF-induced cumulus expansion may involve tyrosine kinase activation and calcium mobilization. In addition, these results indicate the different response of porcine cumulus and granulosa cells originating from small and large follicles on the stimulatory effect of EGF.  相似文献   

7.
Previous studies have shown that biosynthesis of progesterone, the major steroid product of hen granulosa cells, increases during follicular maturation. However, the contribution of individual granulosa cells to the total progesterone production of each follicle is not known. The objective of the present study was to determine the presence and relative activity of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) in individual granulosa cells isolated from each of the five largest yolk-filled preovulatory follicles of laying hens. 3 beta-HSD cytochemistry in the presence or absence of pregnenolone substrate was performed on digitonin-permeabilized granulosa cells in suspension. The stained cells were fixed in a 70% ethanol solution until 1) the percentage of cells from each follicle that stained dark blue-indicating the presence of 3 beta-HSD activity-was determined by counting under light microscopy, and 2) the intensity of staining-indicating the relative amount of enzyme activity-was quantified using video image analysis. There were three findings. First, 100% of granulosa cells from each of the five largest preovulatory follicles stained positively for the presence of 3 beta-HSD activity. Second, the amount of 3 beta-HSD activity was normally distributed among granulosa cells in the population from each follicle. Third, as follicles matured from the fifth largest to the largest follicle, 3 beta-HSD activity increased steadily in individual cells, as indicated by increased staining intensities. The results indicate uniformity in the steroidogenic capacity of cells in the granulosa layer of hen preovulatory follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Oocyte-cumulus complexes and granulosa cells were harvested from small (1–2 mm), medium (3–5 mm), and large (6–12 mm) porcine antral follicles and cultured for 2 and 3 days. The effects of various doses of purified hCG and human FSH on progesterone secretion and monolayer formation were examined. After a 2-day culture period it was found that FSH was more effective in stimulation of progesterone secretion by cultured oocyte-cumulus complexes than in granulosa cells harvested from small follicles (P < 0.01), whereas hCG was more effective in stimulating progesterone secretion in granulosa cells than in oocytecumulus complexes harvested from large follicles. In contrast, after a 3-day culture period, granulosa cells secreted more progesterone compared to oocytecumulus complexes under control conditions or in the presence of hCG or FSH. After 3 days both FSH and hCG stimulated progesterone secretion by oocytecumulus complexes and granulosa cells; however, the hormone effect was greater upon granulosa cells than oocyte-cumulus complexes. After 3 days of culture in the case of both follicular cell types, there was a greater response to FSH in the case of cells harvested from small compared to large follicles. The reverse was true in the case of hCG responsiveness. Monolayer formation ability of oocyte-cumulus complexes was greater in the case of complexes harvested from small and medium than complexes harvested from large follicles. Addition of hCG to the cultures led to a dose-dependent decrease in monolayer formation by oocyte-cumulus complexes harvested from all sizes of follicles.  相似文献   

9.
Chicken granulosa and theca cells were isolated from F1 and F4-6 follicles 2-4 h before ovulation, and the amounts of progesterone, testosterone and oestradiol released in the medium during incubation for 3 h, in the presence or absence of pregnenolone as a percursor and stimulatory drugs or inhibitory drugs, were measured. Progesterone synthesis by granulosa cells was stimulated with oLH or theophylline. Much more progesterone was synthesized when pregnenolone was added to the medium. The amount of testosterone produced by the granulosa cells was similar to that produced by the theca cells. The production of testosterone was increased by the addition of oLH or theophylline. Oestradiol synthesis by F4-6 follicles was higher than by F1 follicles, and it was higher in the theca cells than in the granulosa cells. The addition of oLH or theophylline increased oestradiol synthesis in the theca cells and the granulosa cells of F4-6 follicles. The results indicate that oestradiol can be produced from pregnenolone by the theca cells alone. It is possible, however, that the theca cells also take in the precursors for the production of oestradiol from the granulosa cells.  相似文献   

10.
Porcine granulosa cells from small (1-2 mm), medium (3-5 mm), and large (6-12 mm) antral follicles were cultured in monolayer for 2 to 3 days with 0 to 3 mg of chondroitin-4-sulfate (C-4-S)/ml in the presence or absence of 0.5 microgram follicle-stimulating hormone (NIH-FSH-S13)/ml. Testosterone (1.4 microgram/ml) was added to some cultures as substrate for estrogen synthesis. Progesterone and estrogen secreted into the media were measured by radioimmunoassay. Concentrations of C-4-S similar to concentrations of chondroitin sulfates (CS) reported for small antral or atretic follicles inhibited both basal and FSH-stimulated progesterone secretion. Progesterone secretion was not inhibited by C-4-S when pregnenolone was added to the media. Thus 3 beta-hydroxysteroid dehydrogenase activity was not inhibited by C-4-S. Estrogen secretion was also not inhibited by even the highest concentration of C-4-S tested. Testosterone did not influence C-4-S inhibition of progesterone secretion. Granulosa cells from medium-sized follicles were more sensitive to C-4-S than cells from small follicles. Granulosa cells from large follicles were completely resistant to C-4-S inhibition of progesterone secretion. These observations suggest that C-4-S may play a role in altering gonadotrophin-stimulated and basal progesterone secretion in follicles during differentiation of granulosa cells.  相似文献   

11.
Progestins have recently been shown to augment gonadotropin-stimulated progesterone and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OH-P) biosynthesis in cultured rat granulosa cells. The mechanism by which progestins autoregulate ovarian progestin biosynthesis was investigated by studying the modulation of pregnenolone biosynthesis as well as the activities of the enzymes 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD). Granulosa cells obtained from immature hypophysectomized, estrogen-treated rats were cultured with FSH and/or progestins. Pregnenolone production was measured in the presence of cyanoketone (10(-6) M) to inhibit 3 beta-HSD activity. Enzymatic activities of 3 beta-HSD and 20 alpha-HSD were determined in cell homogenates by direct enzyme assays. FSH stimulated pregnenolone production, while treatment with progesterone or R5020 alone was ineffective. Concomitant treatment with the progestins further enhanced FSH-stimulated pregnenolone production in a dose-dependent manner with minimal effective doses of 10(-8) and 10(-7) M for R5020 and progesterone, respectively. In FSH-primed cells, LH increased pregnenolone accumulation, and concomitant treatment with R5020 also enhanced the LH action. Furthermore, the gonadotropins stimulated the activity of 3 beta-HSD, and this effect was further enhanced by concomitant treatment with either R5020 or progesterone in a dose-dependent manner. In addition, the 20 alpha-HSD activities were enhanced by progestins in cells treated with FSH but not with LH. Thus, both natural and synthetic progestins stimulate the gonadotropin-induced progesterone production in cultured granulosa cells via enhancing the 3 beta-HSD enzyme as well as pregnenolone biosynthesis.  相似文献   

12.
The influence of follicular maturation on progesterone production by collagenase-dispersed hen granulosa cells was measured in short-term incubations. Granulosa cells of the largest follicle (F1) produced up to ten times more progesterone than cells from smaller follicles (F3-F5), not only in response to luteinizing hormone (LH), but also when stimulated by exogenous cyclic AMP or forskolin, both of which raise intracellular cyclic AMP levels by nonreceptor-mediated mechanisms. Moreover, when granulosa cell progesterone synthesis was stimulated by incorporating 25-hydroxy-cholesterol into the incubation medium, an identical pattern was obtained. This could be attributed to a corresponding increase in the specific activity of the mitochondrial cholesterol side-chain cleavage enzyme (20,22 desmolase). An increase in the apparent Vmax was observed without a change in the apparent Km values. Pregnenolone substrate at concentrations which raised progesterone production to levels similar to those observed in response to LH stimulation was utilized equally by granulosa cells of mature and developing follicles. However, at high pregnenolone concentrations, granulosa cells of mature follicles converted significantly more of the precursor to progesterone. Assay of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) showed that the enzyme has two Kms: a low Km present in cells of both mature and developing follicles, and a high Km found only in granulosa cells of more mature follicles. It is concluded that LH-promoted progesterone synthesis in granulosa cells of developing chicken follicles is restricted not so much by the availability of receptors and the competence of the adenylate cyclase/cyclic AMP system, but by the activity of key enzymes, principally the cholesterol-20,22 desmolase.  相似文献   

13.
When porcine granulosa cells were cultured on type I collagen (TIC)-coated dishes, progesterone was continuously secreted in the culture medium. However, when cells were overlaid with a TIC gel, progesterone production was decreased to 34% (day 3) and 16% (day 4) of the value measured for cells without the overlay. The effect of TIC gel overlay on cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), which catalyzes the conversion of cholesterol to pregnenolone and is thought to be the rate-limiting enzyme in the conversion of cholesterol to progesterone, was examined. P450scc gene expression in cells overlaid with a TIC gel was decreased to 62% (day 3) and 36% (day 4) of the value measured for cells without the overlay. Amounts of P450scc were also reduced in the cells overlaid with a TIC gel. When pregnenolone, the direct precursor of progesterone, was added to the culture medium, the increase in progesterone production by cells overlaid with a TIC gel was much greater than that for cells without a TIC gel and a statistical difference in progesterone production was no longer observed between the two groups of cells. Treatment of the cells with human FSH (hFSH) enhanced progesterone production in a dose-dependent manner, irrespective of the presence of a TIC gel overlay. Moreover, hFSH induced P450scc gene expression in cells with and without a TIC gel overlay. These results indicate that a TIC gel overlay reduces progesterone production in granulosa cells via the suppression of P450scc gene expression. This supports the possibility that the existence of a TIC gel on the apical side of granulosa cells prevents the spontaneous luteinization of granulosa cells cultured on TIC-coated dishes. The fact that hFSH overcomes the suppressive effect of the TIC gel overlay on progesterone production may explain the mechanism for the subtle rise in serum progesterone concentration in the late follicle phase of the "in vitro fertilization" program.  相似文献   

14.
Blastocyst fluid was aspirated from Day 6 1/2--7 rabbit blastocysts and was added to cultures of granulosa cells obtained from preovulatory follicles of untreated rhesus monkeys or from follicles of monkeys or from follicles of monkeys treated with PMSG. The stimulation of progesterone secretion was measured and equated with that produced by hCG. The hCG-like activity was also measured in a radioreceptor assay using 125I-labelled hCG and porcine granulosa cells. In 8 out of 10 experiments with cultured cells from untreated monkeys, addition of 20% blastocyst fluid from Days 6--9 of culture stimulated progesterone secretion by 2- to 6-fold. Similar findings were obtained in 5 experiments with cultures from PMSG-treated monkeys except that the blastocyst fluid was added from Days 0 to 6 of culture. The granulosa cells in such cultures underwent morphological luteinization. Compared to a standard of purified hCG the blastocyst fluid contained about 0.76--2.5 ng hCG-like activity/ml which was non-dialysable. The radioreceptor assay indicated the presence of 0.5--2.5 ng hCG-like material/ml.  相似文献   

15.
Genistein affects reproductive processes in animals. However, the mechanism of its action is not fully elucidated and differs among species. The objectives of the current study were: 1/ to establish an in vitro model of granulosa cell culture for studying the intracellular mechanism of phytoestrogen action in porcine ovary; 2/ to determine an in vitro effect of genistein on basal and FSH-stimulated P(4) and E(2) production by porcine granulosa cell populations (antral, mural, total) isolated from large, preovulatory follicles. Granulosa cells were isolated from large (> or =8 mm), preovulatory follicles and separated into antral and mural cell subpopulations. Cells were allowed to attach for 72 h (37 degrees Celsius, 10% serum, 95% air/5% CO2) and than cultured for next 48 hours with or without serum (0, 5 and 10%), FSH (0, 10 or 100 ng/ml) and genistein (0, 0.5, 5 or 50 microM). Basal P(4) and E(2) production did not differ among antral, mural and unseparated granulosa cells isolated form porcine preovulatory follicles. Only mural cells tended to secrete less P(4) and E(2) than other cell populations. FSH stimulated P(4) production in a dose dependent manner in all cell populations and culture systems. Genistein inhibited in a dose dependent manner basal and FSH-stimulated P(4) production by antral, mural and unseparated granulosa cells. However, genistein did not affect E(2) production by granulosa cells. In addition, viability of porcine granulosa cells was not affected by the pyhytoestrogen except the highest dose of genistein. It appears that genistein may be involved in the regulation of follicular function in pigs. Moreover, unseparated porcine granulosa cells may provide a suitable in vitro model for studying the intracellular mechanism of phytoestrogen action in porcine ovary.  相似文献   

16.
The experiments described here were conducted to examine regulation of cytochrome P-450 side-chain cleavage (SCC) mRNA accumulation in porcine granulosa cells isolated from small (1-4-mm) and medium (5-6-mm) follicles. Granulosa cells were cultured under the following conditions: 1) for 48 h or 96 h with 0, 50, or 200 ng/ml porcine FSH; 2) for 96 h with 200 ng/ml FSH and aminoglutethimide (100 microM); and 3) for 96 h with forskolin (100 microM). Total RNA was extracted and examined by Northern and dot-blot hybridization analysis, and culture media were assayed for progesterone concentration. Northern blot analysis revealed a single band approximately 2.1 kb in size. Accumulation of SCC mRNA by granulosa cells was both FSH dose- and culture time-dependent (p less than 0.05) with maximal increases approximately 4.5 times control levels. Aminoglutethimide reduced progesterone production by about 80% while having no effect on granulosa cell accumulation of SCC mRNA compared to cells stimulated with 200 ng/ml of FSH. Forskolin-treated cells produced significantly more progesterone than did cells treated with FSH, but accumulation of SCC mRNA was similar. In response to FSH, concentration of SCC mRNA did not vary with follicle size, but granulosa cells from small follicles produced significantly more progesterone than did those from medium follicles. These results demonstrate that concentration of SCC mRNA in cultured porcine granulosa cells is FSH dose-dependent, does not vary significantly in cells from small- and medium-sized follicles, and is correlated with progesterone production, but may not parallel progesterone secretion. This last observation indicates that control at sites other than SCC mRNA can affect progesterone production.  相似文献   

17.
In addition to pituitary gonadotropins and paracrine factors, ovarian follicle development is also modulated by oocyte factors capable of stimulating granulosa cell proliferation but suppressing their differentiation. The nature of these oocyte factors is unclear. Because growth differentiation factor-9 (GDF-9) enhanced preantral follicle growth and was detected in the oocytes of early antral and preovulatory follicles, we hypothesized that this oocyte hormone could regulate the proliferation and differentiation of granulosa cells from these advanced follicles. Treatment with recombinant GDF-9, but not FSH, stimulated thymidine incorporation into cultured granulosa cells from both early antral and preovulatory follicles, accompanied by increases in granulosa cell number. Although GDF-9 treatment alone stimulated basal steroidogenesis in granulosa cells, cotreatment with GDF-9 suppressed FSH-stimulated progesterone and estradiol production. In addition, GDF-9 cotreatment attentuated FSH-induced LH receptor formation. The inhibitory effects of GDF-9 on FSH-induced granulosa cell differentiation were accompanied by decreases in the FSH-induced cAMP production. These data suggested that GDF-9 is a proliferation factor for granulosa cells from early antral and preovulatory follicles but suppresses FSH-induced differentiation of the same cells. Thus, oocyte-derived GDF-9 could account, at least partially, for the oocyte factor(s) previously reported to control cumulus and granulosa cell differentiation.  相似文献   

18.
Cultures of granulosa cells from small (less than 3 mm), medium (3-6 mm), or large (8-10 mm) pig follicles were treated as follows: (1) basal controls, (2) cyclic adenosine 3',5'-monophosphate (cAMP) pathway agonists (pig FSH: 100 ng/ml; forskolin: 10 microM; dibutyryl cAMP; 1 mM), (3) calcium ionophore A23187 (0.005-1 micrograms), or (4) phorbol 12-myristate 13-acetate (TPA; 0.05-4 ng/ml). The combination of A23187 or TPA together with cAMP agonists was also examined in cultures of granulosa cells from follicles of different sizes. All substances were added at the time of culture, and oestradiol and progesterone were measured in the culture media after 48 h. All cAMP agonists were most potent in their stimulation of steroidogenesis (as a % of control) in cells from small follicles (P less than 0.05) with the exception of forskolin, which increased oestradiol in cells from large follicles to a greater extent than in cells of small follicles (P less than 0.05) (cells from medium follicles demonstrated less stimulation than those from small follicles except in progesterone production, for which FSH was equipotent). With the exception of forskolin, however, granulosa from large follicles showed little (oestradiol) or no stimulation (progesterone) with cAMP agonists. Under basal conditions, A23187 inhibited progesterone in all groups (P less than 0.05), and oestradiol production was reduced in granulosa cells from small follicles (P less than 0.05), unchanged in cells from medium follicles, and significantly stimulated in cells from large follicles. A23187 inhibited the enhanced production of both hormones after administration of cAMP agonists from cells of small and medium follicles (P less than 0.05), with inhibition significantly greater in cells of small follicles compared with medium. In cells from large follicles challenged with cAMP agonists, A23187 inhibited progesterone but stimulated oestradiol production; substitution of TPA (a protein kinase C stimulator) for A23187 gave identical results under basal or FSH-treated cultures of granulosa cells from small-, medium- or large-sized follicles. Our results suggest that TPA, A23187 and cAMP agonists modulate steroidogenesis differently in pig granulosa cells, depending on the stage of maturation of the follicle. Oestradiol production in granulosa cells from large preovulatory follicles may come under the stimulatory control of regulators of protein kinase C as in follicles near ovulation.  相似文献   

19.
The detection of galectin-1 (gal-1) in pig granulosa cell lysates by immunoblotting and its cytosolic as well as membrane-associated localization prompted us to study its effects on cell proliferation and regulation of progesterone synthesis. The lectin stimulated the proliferation of granulosa cells from pig ovaries cultured in serum-free medium. Gal-1 inhibited the FSH-stimulated progesterone synthesis of granulosa cells. This inhibitory effect was strongly reduced by the disaccharidic competitor lactose at 30 mM. The absence of inhibitory effects on dibutyryl-cAMP (db-cAMP), forskolin, and pregnenolone-enhanced cellular progesterone synthesis suggests that gal-1interferes with the receptor-dependent mechanism of FSH-stimulated progesterone production. In FSH-stimulated granulosa cells, western blot analysis revealed the gal-1-mediated suppression of the cytochrome P450-dependent cholesterol side chain cleavage enzyme (P450(SCC)) that catalyzes the conversion of cholesterol to pregnenolone. In the presence of 30 mM lactose, the gal-1-reduced P450(SCC) expression was prevented. Strongly reduced mRNA levels were recorded for P450(SCC) and 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) when FSH-stimulated granulosa cells were cultured in the presence of gal-1. We conclude that gal-1 exerts its inhibitory effect on steroidogenic activity of granulosa cells by interfering the hormone-receptor interaction resulting in decreased responses to FSH stimulation.  相似文献   

20.
Adult cyclic hamsters were used to study the effects of interleukin-1 alpha (IL-1 alpha) on in vitro steroidogenesis in preovulatory follicles. IL-1 alpha increased progesterone secretion by preovulatory follicles during a 24-h incubation in RPMI-1640 medium containing hCG (100 mIU/ml) (progesterone levels: 17.5 +/- 2.2 vs. 10.6 +/- 1.9 ng/follicle/ml, p less than 0.05). IL-1 alpha alone had no effect on follicular steroidogenesis. The source of increased progesterone secretion was the thecae (9.8 +/- 1.0 vs. 5.8 +/- 0.4 ng/2 thecae/ml, p less than 0.01) and not the granulosa cells (6.6 +/- 0.2 vs. 6.8 +/- 0.5 ng/20,000 viable granulosa cells/ml). IL-1 alpha also stimulated production of testosterone in thecae of preovulatory follicles. The follicular progesterone increase was dependent on the time of incubation and dose of IL-1 alpha. IL-1 alpha at 5-50 U/ml maximally stimulated progesterone production in the preovulatory follicles, and no significant effect of IL-1 alpha was observed until the 12th hour of incubation. The effects of IL-1 alpha on in vitro steroidogenesis in preantral follicles, experimentally induced atretic preovulatory follicles, and newly formed corpora lutea were examined. IL-1 alpha in the presence of hCG also significantly increased progesterone secretion by atretic preovulatory follicles. In the incubation of preantral follicles or newly formed corpora lutea, however, IL-1 alpha did not alter steroidogenesis. These results indicate that IL-1 alpha stimulates progesterone secretion by preovulatory follicles and that the target tissue for this effect is the thecal layer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号