首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in uptake, seed storage and distribution of molybdenumwithin plants of two genotypes of Phaseolus vulgaris L. wereobserved with and without external sources of molybdenum ina glasshouse experiment. Differences in the amount of totalplant Mo translocated into seed appeared to be under genotypiccontrol, with a consistently larger proportion of total plantmolybdenum being accumulated in seed by Kabanima compared toBaseka. The uptake efficiency (total amounts accumulated withtime) did not differ between the two genotypes, but the allocationof Mo to plant parts did. Kabanima had larger nodule dry weight(30 to 40%), and nodule molybdenum content up to three timesgreater than Baseka with concurrent higher rates of N2- fixation,particularly when plants were grown in the absence of an externalsource of Mo. Kabanima was also more efficient in translocatingMo in roots, nodules and pod walls to the seeds, particularlywhen Mo was deficient (43% of total plant Mo allocated to seedsin Kabanima compared to 31% in Baseka). Large amounts of molybdenumwere accumulated in the pod walls of Baseka plants (11 µgplant-1) but this was not translocated to the seed.  相似文献   

2.
The effect of seven rates of molybdenum (Mo) supply on the distributionand redistribution of Mo in Vigna mungo (black gram) cv. Reguron a Mo-deficient sandy loam was examined from flower bud appearanceto pod set in one experiment and during pod filling to maturityin another. At the three lowest Mo supply rates, N deficiency symptoms typicalof Mo deficiency appeared, and shoot dry matter and shoot nitrogencontent were depressed. Increasing Mo supply increased Mo concentrationsin all plant parts but the response varied with Mo supply andwith plant part. In leaf blades and petioles, Mo concentrationsincreased slightly when the Mo supply increased from severelydeficient to deficient levels but further increases in Mo supplymarkedly increased the Mo concentrations, particularly in immatureand recently matured leaves. In petioles, Mo concentrationsgenerally exceeded those in the blades which they supportedat all levels of Mo supply. At Mo rates greater than that requiredfor maximum growth, Mo concentrations in basal stem segmentsexceeded those in petioles. Molybdenum concentrations in nodulesexceeded those in above ground plant parts except at the highestlevel of Mo supply where the concentrations in basal stem segmentsexceeded those in nodules. In Mo-adequate plants, Mo contents in the trifoliolate leavesdecreased with time suggesting that Mo was readily remobilized.By contrast, in stem segments at all levels of Mo supply, andin trifoliolate leaves in Mo-deficient plants, Mo contents remainedconstant or increased with time suggesting that Mo was not remobilizedin all plant parts or at all levels of Mo supply. Thus, theresults suggest that in black gram Mo was variably mobile, beingphloem immobile at low Mo supply, but phloem-mobile in all plantparts with the possible exception of stem segments at adequateMo supply. The relevance of these results for the developmentof plant tests for Mo deficiency diagnosis is discussed.Copyright1994, 1999 Academic Press Molybdenum, phloem-mobility, redistribution, black gram, Vigna mungo L. Hepper  相似文献   

3.
Molybdenum is thought to be of intermediate mobility in thephloem and this may limit N2-fixation by restricting the supplyof molybdenum to the nodules of legumes. When no molybdenumwas supplied to Phaseolus vulgaris nodule Mo content increasedat the expense of shoots and roots even when seed molybdenumcontent was large. Nodules sampled from plants receiving molybdenumin the feeding solution had a concentration of 21–78 µgMo g-1. In the absence of molybdenum and with deficient seedcontent (<0.5 µg Mo seed-1) nodule concentrations rangedfrom 1.9 to 3.5 fig Mo g-1 in a small seeded genotype and 8.7±0.48µg Mo g-1 in a large seeded genotype. N2-fixation in theseplants was not impaired except in one instance where noduleconcentration was 1.9 µg Mo g-1. Evidence that molybdenumis effectively translocated from leaves to roots and noduleswas obtained using foliar treatments. All of the 3.3 µgMo applied to a leaf was recovered in the plant after 10 d.Mo content of the nodules increased by 81%, whilst Mo contentof shoots increased by 56%. Root Mo content was eight timesgreater than that in plants not receiving a foliar treatmentof molybdenum. We conclude that when molybdenum was scarce inthe plant it was mobile and was translocated from roots andshoots to the nodules. As a result, nodule concentrations andcontents of molybdenum were frequently maintained at amountssufficient for N2-fixation even when the plant was entirelydependent on a small seed reserve of molybdenum.  相似文献   

4.
Soybean (Glycine max [L.] Merr.) N2 fixation is a primary plant mechanism responsible for meeting plant-N demand during seed development. Nitrogen fixation is recognized as a drought-sensitive mechanism; however, N2 fixation response to water deficit and N2 fixation recovery at different reproductive stages are not well documented. We tested the hypothesis that water deficit during late reproductive stages would inhibit N2 fixation and lead to the breakdown of essential leaf proteins and an inability to recover N2 fixation. Acetylene reduction activity (ARA) and N redistribution response to a 5-d drought period at flowering (R2), early seed fill (R5), and late seed fill (R6) were evaluated in one genotype (Hendricks, maturity group 0). Control plants maintained high rates of nodule activity until late seed fill. Plants drought stressed at R2 and R5 recovered ARA after rewatering and in some cases had higher nitrogenase activity than control plants during mid-seed fill. Recovery of ARA on plants stressed at R2 and R5 was associated with higher shoot N concentration than control plants at maturity. Drought stress at R6 reduced ARA, and the inability to recover ARA after stress alleviation at R6 resulted in decreased individual seed mass, which was likely caused by an acceleration of leaf N redistribution and a shorter seed-fill period. Results emphasized the importance of soybean N2 fixation during late seed development on seed yield and that the ability to recover N2 fixation following drought is dependent upon crop developmental stage.  相似文献   

5.
Distribution of Nitrogen during Growth of Sunflower (Helianthus annuus L.)   总被引:1,自引:0,他引:1  
The accumulation, distribution and redistribution of dry matterand nitrogen is described for Helianthus annuus L. cv. Hysun21 grown on 6 mM urea in glasshouse culture. Seed dry matterand nitrogen were transferred to seedlings with net efficienciesof 40 and 86 per cent respectively. At flowering, the stem hadmost of the plant's dry matter and the leaves most of its nitrogen.About 35 per cent of the plant's nitrogen accumulated afterthree-row anthesis. The amount of protein in vegetative parts,especially leaves, declined after flowering. Concentrationsof free amino compounds also decreased during growth. Matureseeds had 38 per cent of the total plant dry weight and 68 percent of the total nitrogen. Seeds acquired 33 per cent of theirdry matter and nitrogen from redistribution from above-groundplant parts. The stem was most important for storage of carbohydrate,leaves the most important for nitrogen. Over 50 per cent ofthe nitrogen in the stem and leaves was redistributed. Plantsthat received 6 mM nitrate accumulated more dry matter thanurea-grown plants. Seeds from nitrate-grown plants were heavier(58 mg) than those of urea-grown plants (46 mg), and their percentageoil was greater (50 and 41 respectively). The amount of nitrogenper seed was the same. Little or no urea was detected in xylem sap of plants suppliedwith 5 mM urea, but it was detected in sap of plants which received25 mM. Concentrations of urea and amino compounds in the sapdecreased up the stem. Plants supplied with nitrate had mostof the nitrogen in xylem sap as NO2, suggesting littlenitrate reduction in roots. Plants grown on 6 mM nitrate andchanged to high levels of urea-nitrogen for 14 days still hadhigh levels of nitrate; little nitrate remained in plants receivinglow levels of urea. When urea is applied in irrigation waterto field-grown sunflower, the nitrogen is subsequently takenup as nitrate due to rapid nitrogen transformations in the soil. Helianthus annuus L., sunflower, urea, nitrate, nitrogen transport, xylem sap, nitrogen accumulation nitrogen distribution  相似文献   

6.
Defined solutions containing cytokinin and/or mineral nutrientswere supplied in lieu of the roots through the cut stem baseof soybean explants (a leaf with associated pod and subtendingstem segment) in order to analyze the roles of cytokinin andmineral nutrients from the roots in pod development and foliarmaintenance. In explants cut at early-mid podfill, supplyingonly H2O accelerated leaf senescence and pod maturation anddecreased seed d. wt relative to comparable parts of intactplants. Zeatin (Z) and/or minerals not only delayed leaf yellowingand the decline in foliar chlorophyll levels and photosyntheticrates but also inhibited leaflet and petiole abscission relativeto H2O controls. Even large declines in foliar assimilatoryprocesses did not necessarily lead to abscission. Z and/or mineralsalso increased stomatal conductivity throughout podfill. Z showedsome positive synergistic effects with minerals on leaf maintenance.Pod wall, cotyledon and radicle yellowing were delayed by Zand/or minerals but not as much as leaf senescence. Mineralsonly or Z +minerals prolonged seed d. wt accumulation and increasedfinal dry seed wt to a level similar to that for intact plants.Seed growth showed a complex interrelation with pod wall andleaf f. wt and d. wt changes. A decline in cytokinin and mineralflux from the roots appears to be important for pod-inducedleaf senescence; however, pod development, foliar senescenceand their component processes may be affected differently. Thus,even though the explant is a physiological/nutritional moduleof the whole plant, it is influenced by cytokinin and mineralsfrom the roots and therefore only semiautonomous. Glycine max L. Merr. cv. Anoka, soybean, abscission, cytokinin, chlorophyll, mineral nutrients, seed development, semiautonomous physiological modules, senescence, stomatal resistance  相似文献   

7.
Samples of stem exudate and plant tissue collected from field-grown soybean (Glycine max [L.] Merr.) plants were analyzed for allantoin and allantoic acid. Nitrogen in nitrate plus amino acids exceeded ureide N concentration in stem exudate prior to flowering. During all of reproductive development (from about 40 days after planting until maturity), ureide N concentration was two to six times greater than amino acid plus nitrate N concentration. Allantoin and allantoic acid, not asparagine, are the principal forms of nitrogen transported from nodulated roots to shoots of the soybean plant. During pod and seed development ureide N comprised as high as 2.3, 37.7, and 15.8% of total N in leaf blades, stems + petioles, and fruits, respectively. The concentration of ureide in stems and fruits declined to nearly zero at maturity.  相似文献   

8.
通过盆栽试验,研究了内生真菌拟茎点霉B3(Phomopsis liquidambari)及苍术(Atractylodes lancea)粉联合施用对连作花生根际土壤微生物区系、酶活性及有效态微量元素(Mo、B、DTPA-Fe、Zn、Cu、Mn)含量的影响。结果表明:内生真菌B3和苍术粉复合处理比内生真菌B3处理的荚果和秸秆产量分别增加10.28%和14.11%,内生真菌B3处理与正常施肥相比显著提高了根瘤数量、荚果和秸秆产重,各处理组与正常施肥对照相比分枝数和根长无显著差异。B3处理与对照相比显著提高了种子期、结荚期和成熟期根际土壤可培养细菌和放线菌数量,B3和苍术粉复合处理与对照相比显著提高种子期、花期和成熟期可培养真菌和放线菌数量;细菌DGGE指纹图谱聚类分析表明,B3和苍术粉复合处理相对于正常施肥处理,显著改变种子期、苗期、花期和成熟期花生根际土壤细菌群落结构,同时苗期、花期和结荚期的细菌条带数和香农指数也有所提高,真菌DGGE指纹图谱聚类分析表明,B3和苍术粉复合处理对真菌群落影响较大,除种子期以外的生育期真菌条带数和香农指数都有明显提高,花期真菌群落结构变化最大,相似度仅为49.6%。花生关键生育期(花期和结荚期)根际土壤脲酶和蔗糖酶活性B3处理和复合处理都显著高于正常施肥对照,促进了连作花生生态系统的物质循环和能量流动。B3和苍术粉复合处理促进了花生生长发育必需微量元素Mo、B、Fe、Zn、Mn的活化,花生叶片和籽粒中微量元素Mo、B、Fe的积累显著增加。研究结果表明,内生真菌和苍术粉联合施用能有效改善连作花生根际微生物区系,提高土壤酶活性,促进微量元素的活化和吸收,对缓解花生连作障碍具有重要意义。  相似文献   

9.
Elevated UV-B radiation (12.2 kJ m–2 d–1) as against the ambient level of 10 kJ m–2 d–1 affected flowering, productivity and biomass partitioning of green gram [Vigna radiata (L.) Wilczek cv. KM-2]. UV-B stress delayed flowering initiation and achievement of 50 % flowering, reduced flower retention by 25 %, potential yield by 18 % and all yield attributes such as pod number (25 %), pod mass (41 %), seed number (32 %) and seed mass (45 %). Harvest index and shelling percentage were also reduced by 31 and 7 %, respectively. Application of triadimefon (20 mg dm–3) to unstressed plants accelerated flowering and enhanced flower retention (21 %), potential yield (15 %) and yield attributes (7 to 44 %). The partitioning of biomass between plant parts also showed improvement over the control plants. In UV-B-stressed plants, triadimefon treatment compensated the inhibitions to varying extents.  相似文献   

10.
The relative effectiveness of nitrate, allantoin, or nitrate plus allantoin as sources of nitrogen for the indeterminate soybean plant [ Glycine max (L.) Merr cv. Harper] was studied throughout vegetative and reproductive growth. All plants were provided with 3.0 m M nitrogen and were grown hydroponically in growth chambers. During vegetative and early reproductive growth, plants given nitrate or nitrate plus allantoin grew faster than plants provided allantoin only. However, during pod fill, plants provided with allantoin or allantoin plus nitrate gained weight more rapidly than plants receiving just nitrate. More importantly, at maturity plants that had been provided with allantoin or allantoin plus nitrate during pod fill were 30% heavier in total dry weight, 50% higher in nitrogen content, and 50% higher in seed yield than plants that had received just nitrate. At full bloom, all plants were inoculated with the same culture of Bradyrhizobium japonicum , and twice each week throughout pod fill each plant was assayed for nitrogen fixation (acetylene reduction). Correlation coefficients obtained by linear regression analysis show a strong positive correlation between the measured rate of nitrogen fixation and maximum plant fresh weight (r = 0.83), total plant nitrogen (r = 0.81), or seed yield (r = 0.76). The fact that nitrogen fixation during pod fill stimulates plant growth and seed yield, coupled with the facts that nitrate blocks nodulation and is not used efficiently during pod fill by the soybean plant, may explain why seed yield of field-grown soybeans usually does not respond to added fertilizer nitrogen. Thus, it is suggested that enhanced nitrogen fixation may be the key factor in improving soybean seed yield.  相似文献   

11.
Nodul{macron}ted alfalfa plants were grown hydroponically. Inorder to quantify N2 fixation and remobilization of N reservesduring regrowth the plants were pulse-chase-labelled with 15N.Starch and ethanol-soluble sugar contents were analysed to examinechanges associated with those of N compounds. Shoot removalcaused a severe decline in N2 fixation and starch reserves within6 d after cutting. The tap root was the major storage site formetabolizable carbohydrate compounds used for regrowth; initiallyits starch content decreased and after 14 d started to recoverreaching 50% of the initial value on day 24. Recovery of N2fixation followed the same pattern as shoot regrowth. Afteran initial decline during the first 10 d following shoot removal,the N2 fixation, leaf area and shoot dry weight increased sorapidly that their levels on day 24 exceeded initial values.Distribution of 15N within the plant clearly showed that a significantamount of endogenous nitrogen in the roots was used by regrowingshoots. The greatest use of N reserves (about 80% of N incrementin the regrowing shoot) occurred during the first 10 d and thencompensated for the low N2 fixation. The distribution of N derivedeither from fixation or from reserves of source organs (taproots and lateral roots) clearly showed that shoots are thestronger sink for nitrogen during regrowth. In non-defoliatedplants, the tap roots and stems were weak sinks for N from reserves.By contrast, relative distribution within the plant of N assimilatedin nodules was unaffected by defoliation treatment. Key words: Medicago sativa L., N2 fixation, N remobilization, N2 partitioning, regrowth  相似文献   

12.
Summary Separate experiments examined nodulation and seed yield of cowpea cv. Prima after (a) changes in the level of combined nitrogen from 25 to 0 or 60 ppm N, (b) cycles of wilting and rehydration, and (c) shading to ca 50% full daylight. Plants were grown in the simulated tropical environment of a plastics bubble house and experienced these changes over the growth stages: emergence to first flower, first flower to mid pod-fill or mid pod-fill to maturity.Seed yields of nodulated plants were unaffected by combined nitrogen supply and almost double those of non-nodulated plants (100 g cf 56 g per plant)-due mainly to increases in pod number per plant and mean seed weight. Reducing the nitrogen level from 25 to 0 ppm N, especially between mid pod-fill and maturity, reduced seed yields of non-nodulated plants to 36 g per plant. At the first flowering stage, plants grown without combined nitrogen had nitrogenase activities less than 10% of those supplied with 25 ppm N; 60 ppm N at any stage of development more than halved nitrogenase activity when compared with plants supplied with 25 ppm.Repeated wilting prior to flowering markedly reduced seed yields compared with the unstressed controls (41 g cf 76 g per plant)-mainly by decreasing subsequent pod production. Nodule weight and nitrogenase activity per plant were also much reduced. Wilting after flowering did not reduce yield, and nitrogenase activity was less affected.Shading throughout, or from first flower onwards, reduced seed yield by about 25% because fewer pods were produced. All shading treatments significantly increased mean seed weight compared with unshaded controls (116–121 mg cf 105 mg).One of a series of papers describing work undertaken in a collaborative project with the International Institute of Tropical Agriculture, Nigeria, sponsored by the U.K. Ministry of Overseas Development.Soil Microbiology Department, Rothamsted Experimental Station, Harpenden, Herts.Soil Microbiology Department, Rothamsted Experimental Station, Harpenden, Herts.  相似文献   

13.
KJAeR  SOREN 《Annals of botany》1992,70(1):11-17
The patterns of plant growth and N2 fixation capability in Pachyrhizusahipa (Wedd) Parodi inoculated with BradyrhizobiumPachyrhizusSpec 1’ strains (Lipha Tech) were investigated in a zero-Nculture system under greenhouse conditions The P ahipa plantis day-neutral with respect to reproductive development Competitionoccurred between the two storage organs (legume and tuber) andprevented high tuber yield in P ahipa The symbiotic effectivenessof the association was high, as the profuse nodulation providedthe inoculated plants with adequate amounts of N Nodules werepresent throughout the cycle of P ahipa The change in rate ofN2 fixation (RNF) and relative growth rate (RGR) was almostparallel during ontogenesis The developmental pattern of N2fixation activity revealed that 65% of total N2 fixation occurredafter N began to accumulate in the reproductive (pod wall plusseed) tissue During pod filling allocation of N compounds tothe seeds exceeded N2 fixation, the pod walls being the primarysource of redistributed N, followed by the leaves. Pachyrhizus ahipa (Wedd) Parodi, ahipa, tuber crop, dinitrogen fixation, dry matter, N partitioning, reproductive growth  相似文献   

14.
Ten to 20% of the net photosynthetic output of a tropical grainlegume may be consumed by the nodulation-nitrogen-fixation process.If plant growth activities during the reproductive phase werelimited by photosynthetic output, enhanced nitrogen fixationwould seemingly lower total plant mass and seed yield. To testthis possibility, soybean [Glycine max (L.) Merr.] plants weregrown hydroponically on nutrient medium supplemented with minimalurea or with an excess of either nitrate or nitrate plus urea.Acetylene reduction activities (i.e. nitrogen fixation rates)and transpiration rates were measured twice weekly on theseplants through pod fill. Of the plants inoculated, those grownon minimal urea revealed significantly greater acetylene reductionactivities and transpiration rates. At maturity, plants thathad fixed nitrogen at a rapid rate during pod fill had a significantlygreater seed size, total plant mass (i.e. net photosyntheticrate) and nitrogen content than uninoculated or poorly nodulatedplants grown on an excess of nitrate. It is concluded, therefore,that a rapid rate of nitrogen fixation during pod fill enhancesboth transpiration and net photosynthetic output. The increasedavailability of usable nitrogen (i.e. ureides), coupled withenhanced transpiration and photosynthetic output, significantlyincreases total plant mass and seed yield. Thus, enhanced nitrogenfixation seems to be an inexpensive means of increasing seedyield of soybean and perhaps of other tropical grain legumes. Key words: Glycine max, nodulation, nitrate, urea  相似文献   

15.
The effects of inoculating soil with a water suspension of Bradyrhizobium japonicum (i) at seeding, (ii) 7, or (iii) 14 days after planting (DAP), (iv) seed slurry inoculation and (v) seed slurry supplemented with postemergence inoculation of a water suspension of Bradyrhizobium at 7 or (vi) 14 DAP, on nodulation, N2 fixation and yield of soybean (Glycine max. [L.] Merrill) were compared in the greenhouse. The 15N isotope dilution technique was used to quantify N2 fixed at flowering, early pod filling and physiological maturity stages (36, 52 and 70 DAP, respectively). On average, the water suspension inoculation formed the greatest number of nodules, and seed plus postemergence inoculation formed slightly more nodules than the seed-only inoculated plants (27, 19 and 12 nodules/plant respectively at physiological maturity). Seed slurry inoculation followed by postemergence inoculation at 14 DAP gave the highest nodule weight, with the plants fixing significantly more (P<0.05) N2 (125 mg N plant−1 or 56% N) than any other treatment (mean, 75 mg plant−1 or 35% N). However, the higher N2 fixation was not translated into higher N or dry matter yields. Estimates of N2 fixed by the ostemergence Bradyrhizobium inoculations as well as plant yield were not significantly different from those of the seed slurry inoculation. Thus, delaying inoculation (e.g., by two weeks as in this study) did not reduce the symbiotic ability of soybean plants.  相似文献   

16.
When grown in a nutrient solution containing combined nitrogen(NH4NO3), Lotus pedunculatus and L. tenuis seedlings inoculatedwith a fast-growing strain of Rhizoblum (NZP2037) did neitherdevelop root nodules nor develop flavolans in their roots. Incontrast, the roots of nodulated seedlings growing in a nitrogen-freenutrient solution contained flavolans. Flavolan synthesis coincidedwith root nodule development on these plants. When added as a single dose, high concentrations of NH4NO3 (5and 10 mg N per plant) stimulated the growth of L. pedunculatusplants but suppressed nodulation and nitrogen fixation. In contrastthe continued supply of a low concentration of NH4NO3 (1?0 mgN d–1 per plant) stimulated nitrogen fixation by up to500%. This large increase in nitrogen fixation was associatedwith a large increase in nodule fresh weight per plant, a doublingof nodule nitrogenase activity, and a lowering of the flavolancontent of the plant roots. The close relationship between nitrogendeficiency, nodule development, and flavolan synthesis in L.pedunculatus meant that it was not possible (by nitrogen pretreatmentof plants) to alter the ineffective nodule response of a Rhizobiumstrain (NZP2213) sensitive to the flavolan present in the rootsof this plant.  相似文献   

17.
The seasonal dynamics of symbiotic fixation, distribution andfate of nitrogen (N) were studied on two successive crops ofred clover (Trifolium pratenseL.) grown outdoors in soil containersunder the Mediterranean climate of southern France. Nitrogenaseactivity was followed throughout the growing season using acetylene(C2H2) reduction assays. The distribution and transfer of symbioticallyfixed N were followed by periodic measurements of15N distributionin plants after exposure of the root systems to labelled dinitrogen(15N2). In both years there were two peaks of nitrogenase activity,one in spring and one in late summer, separated by a sharp decreaseduring the flowering period. Over the entire growth cycle, symbioticallyfixed N accounted for 61 to 96% of the total plant N. Once weekafter incorporation, 60 to 90% of N derived from the atmospherewas recovered in the aerial parts of the plants. More than 50%of this was in the leaves, but there were differences in distributionaccording to the stage of development. The maximum percentage(20–28%) recovered from nodulated roots occurred in May–June,during maximum growth of the vegetative organs, and in September.Above-ground symbiotically fixed N was highly mobile with time,moving from the rosette leaves to the leaves attached to theelongated stems and then to the seeds, where 25 to 50% of Nfixed in May and June was recovered in September. Because of:(1) the high turnover rate of leaves; and (2) the relativelyhigh N content of dead leaves, as much as 50% of the symbioticallyfixed N in a year was potentially available to the soil micro-organismsas litter. The maximum transfer was in spring and winter. Ofthe remainder, 20 to 35% was recovered in living plant partsduring regrowth in March of the second year. Transfers to andfrom the root system were less pronounced, but significant decreasesin N content of the roots occurred early in the second yearjust after foliage regrowth was initiated. It is concluded that,because of its high foliage productivity and turnover rate,and high yield of symbiotically fixed N, red clover is a goodcandidate to provide substantial amounts of N to the soil throughoutthe year and therefore restore N fertility. Red clover; Trifolium pratenseL.; forage legumes; labelled dinitrogen (15N2) reduction; acetylene reduction; nitrogen fixation; nitrogen distribution; nitrogen transfer  相似文献   

18.
Among land plants, which generally exhibit autotrophy through photosynthesis, about 880 species are mycoheterotrophs, dependent on mycorrhizal fungi for their carbon supply. Shifts in nutritional mode from autotrophy to mycoheterotrophy are usually accompanied by evolution of various combinations of characters related to structure and physiology, e.g., loss of foliage leaves and roots, reduction in seed size, degradation of plastid genome, and changes in mycorrhizal association and pollination strategy. However, the patterns and processes involved in such alterations are generally unknown. Hybrids between autotrophic and mycoheterotrophic plants may provide a breakthrough in molecular studies on the evolution of mycoheterotrophy. We have produced the first hybrid between autotrophic and mycoheterotrophic plant species using the orchid group Cymbidium. The autotrophic Cymbidium ensifolium subsp. haematodes and mycoheterotrophic C. macrorhizon were artificially pollinated, and aseptic germination of the hybrid seeds obtained was promoted by sonication. In vitro flowering was observed five years after seed sowing. Development of foliage leaves, an important character for photosynthesis, segregated in the first generation; that is, some individuals only developed scale leaves on the rhizome and flowering stems. However, all of the flowering plants formed roots, which is identical to the maternal parent.  相似文献   

19.
Two experiments were done in Saxcil growth cabinets in order to investigate the effects of climatic factors and nitrogen nutrition on the growth, reproductive development and seed yield of soyabean cv. TK5. In the first, plants were grown to maturity in eight environments comprising all combinations of two short daylengths (11 h 40 min and 13 h 20 min), two day (27 and 33oC) and two night (19 and 24oC) temperatures. In the second, day temperature was kept at 33oC but the night temperature was varied (19 and 24oC) as was the mineral nitrogen supply (20 and 197 ppm N) to plants which were either inoculated or not with an effective single strain of Rhizobium. Taller, more branched, later flowering plants were produced in the longer daylength but seed yield was hardly affected because the components of yield did not all respond similarly. In the higher day temperature treatments seed yield per plant was reduced by half because all yield components were adversely affected - pods per plant by 34 %, mean seed dry weight by 24 % and seeds per pod just slightly. There was a marked effect of the higher night temperature which promoted early vegetative growth, induced early flowering and although the number of pods per plant was, overall, reduced by 48 %, seed yield per plant was little affected as mean seed dry weight was increased by 37 % and the number of seeds per pod was also increased slightly. Prior to flowering, nodulated plants obtained about two thirds of their total nitrogen requirement via direct uptake and one third through the symbiotic system. Vegetative dry weight and plant nitrogen content were increased by the higher mineral nitrogen level and, although height was slightly diminished, more branches were produced. Seed yield, however, was only slightly increased. These experiments have shown that night temperature is an environmental factor of major importance for the growth of this soyabean cultivar. They have provided, also, a more rational basis for interpreting seasonal variations in growth and seed yield of soyabean in the tropics where, clearly, day and night temperature effects can override those of daylength and nitrogen nutrition.  相似文献   

20.
Proline is emerging as a critical component of drought tolerance and fine tuning of its metabolism under stress affects the plants sensitivity and response to stress. Thus the study was carried out to analyse the effect of water deficit on the proline content and principal enzymes involved in its synthesis (Δ1-pyrolline-carboxylate synthetase) and catabolism (proline dehydrogenase) at different developmental stages and in different organs (roots, nodules, leaves, pod wall, and seeds) of two chickpea (Cicer arietinum L.) cultivars differing in drought tolerance (drought tolerant ICC4958 and drought sensitive ILC3279). It was observed that increased Δ1-pyrolline-carboxylate synthetase activity under moderate stress in roots and nodules of ICC4958 caused an increase in proline content during initiation of reproductive development whereas increased proline dehydrogenase activity in nodules and leaves at this period helped to maintain reducing power and energy supply in tissues and proper seed development as seed biomass increased consistently up to maturity. On the other hand, roots and nodules of ILC3279 responded to stress by increasing proline content after the developmental phase of reproductive organs was over (near maturity) which negatively affected the response of pod wall to stress. Concurrent increase in activities of Δ1-pyrolline-carboxylate synthetase and proline dehydrogenase in pod wall of ILC3279 aggravated the oxidative stress and affected seed development as seed biomass initially increased rapidly under stress but was unaffected near maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号