首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Syntrophic relationships are the key for biodegradation in methanogenic environments. We review the ecological and physiological features of syntrophic communities involved in the degradation of saturated and unsaturated long-chain fatty acids (LCFA), as well as their potential application to convert lipids/fats containing waste to biogas. Presently, about 14 species have been described with the ability to grow on fatty acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae . The principle pathway of LCFA degradation is through β-oxidation, but the initial steps in the conversion of unsaturated LCFA are unclear. Communities enriched on unsaturated LCFA also degrade saturated LCFA, but the opposite generally is not the case. For efficient methane formation, the physical and inhibitory effects of LCFA on methanogenesis need to be considered. LCFA adsorbs strongly to biomass, which causes encapsulation of active syntrophic communities and hampers diffusion of substrate and products in and out of the biomass. Quantification of archaea by real-time PCR analysis suggests that potential LCFA inhibitory effect towards methanogens might be reversible. Rather, the conversion of adsorbed LCFA in batch assays was shown to result in a significant increase of archaeal cell numbers in anaerobic sludge samples.  相似文献   

2.
Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR-amplified 16S rRNA gene fragments. Prominent DGGE bands of the enrichment cultures were identified by 16S rRNA gene sequencing. A significant part of the retrieved 16S rRNA gene sequences was most similar to those of uncultured bacteria. Bacteria corresponding to predominant DGGE bands in oleate and palmitate enrichment cultures clustered with fatty acid-oxidizing bacteria within Syntrophomonadaceae and Syntrophobacteraceae families. A low methane yield, corresponding to 9 to 18% of the theoretical value, was observed in the oleate enrichment, and acetate, produced according to the expected stoichiometry, was not further converted to methane. In the palmitate enrichment culture, the acetate produced was completely mineralized and a methane yield of 48 to 70% was achieved from palmitate degradation. Furthermore, the oleate enrichment culture was able to use palmitate without detectable changes in the DGGE profile. However, the palmitate-specialized consortia degraded oleate only after a lag phase of 3 months, after which the DGGE profile had changed. Two predominant bands appeared, and sequence analysis showed affiliation with the Syntrophomonas genus. These bands were also present in the oleate enrichment culture, suggesting that these bacteria are directly involved in oleate degradation, emphasizing possible differences between the degradation of unsaturated and saturated LCFAs.  相似文献   

3.
4.
The effect of some fatty acids on the phase behavior of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer was investigated with special interest in possible difference between saturated and unsaturated fatty acids. The phase behavior of hydrated DPPC bilayer was followed by a differential scanning calorimetry and a Fourier transform infrared spectroscopy. The addition of palmitic acid (PA) increased the bilayer phase transition temperature with the increase of the PA content in the mixture. In addition, DPPC molecules in gel phase bilayer became more rigid in the presence of PA compared with those in the absence of PA. This effect of PA on the phase behavior of hydrated DPPC bilayer is common to other saturated fatty acids, stearic acid, myristic acid, and also to unsaturated fatty acid with trans double bond, elaidic acid. Contrary to these fatty acids, oleic acid (OA), the unsaturated fatty acid with cis double bond in the acyl chain, exhibited quite different behavior. The effect of OA on the bilayer phase transition temperature was rather small, although a slight decrease in the temperature was appreciable. Furthermore, the IR spectral results demonstrated that the perturbing effect of OA on the gel phase bilayer of DPPC was quite small. These results mean that OA does not disturb the hydrated DPPC bilayer significantly.  相似文献   

5.
The remarkable binding properties of serum albumin have been investigated extensively, but little is known about an important class of fatty acids, the very long-chain saturated fatty acids (VLCFA; >18 carbons). Although VLCFA are metabolized efficiently in normal individuals, they are markers for and possibly causative agents of several peroxisomal disorders. We studied the binding of [(13)C]carboxyl-enriched arachidic (C20:0), behenic (C22:0), lignoceric (C24:0), and hexacosanoic (C26:0) acids to bovine serum albumin (BSA) by (13)C-NMR spectroscopy. For each VLCFA, the NMR spectra showed multiple signals at chemical shifts previously identified for long-chain fatty acids (12-18 carbons), suggesting stabilization of binding by similar, if not identical, interactions of the fatty acid carboxyl anion with basic amino acid residues. The maximal binding (mol of VLCFA/mol of BSA) and the number of observed binding sites decreased with increasing chain length, from 4-5 for C20:0, 3-4 for C22:0, and 2 for C24:0; we validated our previous conclusion that BSA has only one site for C26:0 (Ho, J. K., H. Moser, Y. Kishimoto, and J. A. Hamilton. 1995. J. Clin. Invest. 96: 1455-1463). Analysis of chemical shifts suggested that the highest affinity sites for VLCFA are low affinity sites for long-chain fatty acids. In competition experiments with (13)C-labeled C22:0 (3 mol/mol of BSA) and unlabeled oleic acid, C22:0 bound to BSA in the presence of up to 4 mol of oleic acid/mol of BSA, but 1 mol was shifted into a different site. Our studies suggest that albumin has adequate binding capacity for the low plasma levels of VLCFA with 20 to 26 carbons, but the protein may not be able to bind longer chain VLCFA.  相似文献   

6.
7.
It is believed that free fatty acids contribute to the pathogenesis of type 2 diabetes in humans. We have recently shown that lipoapoptosis of human beta-cells is specifically induced by saturated fatty acids while unsaturated had no effect. In the present study we tested the effect of co-incubation of different saturated and unsaturated free fatty acids on lipoapoptosis in beta-cells. RIN1046-38 cells and isolated human beta-cells were incubated with combinations of saturated fatty acids (palmitate, stearate) and mono- or polyunsaturated fatty acids (palmitoleate, oleate, and linoleate). Cells were incubated for 24-72 h with 1mM fatty acids. All unsaturated fatty acids tested completely prevented palmitate- or stearate-induced apoptosis of rat and human beta-cells as assessed by flow cytometric cell cycle analysis and TUNEL assay. This might suggest that apoptosis in vivo is predominantly determined by the content of unsaturated fatty acids in a mixed fatty acid pool.  相似文献   

8.
9.
10.
11.
12.
A spectrophotometric method has been developed for the determination of long-chain unsaturated and hydroxy fatty acids in concentrated sulfuric acid. The assay is based on the absorbance produced in the 290 to 300-nm range from their reaction with sulfuric acid at 100°C. α,β-Unsaturated aliphatic acids give absorption bands at 235–240 nm and thus can be easily differentiated from unsaturated fatty acids having the double bond(s) at positions not conjugated with the carboxyl group. A certain minimum chain length is required for full development of the absorption band at 300 nm. Position and intensity of the so-formed absorption band is independent on the position and number of the double bonds or hydroxyl groups. Carboxyl groups are not essential, as unsaturated hydrocarbons and higher alcohols likewise react with sulfuric acid to produce the absorbing species at 300 nm, providing a minimum chain length of 5 carbon atoms is present. The nature of the absorbing species at 300 nm is discussed.  相似文献   

13.
14.
15.
Unsaturated fatty acid auxotrophs of Escherichia coli are able to use only unsaturated fatty acids of the cis configuration as the required growth supplement. A mutation in the fatA gene allows such auxotrophs to utilize unsaturated fatty acids with a trans double bond as well as fatty acids having a cis double bond. The fatA gene was mapped to min 69 near argG, and the allele studied (fatA1) was found to be dominant over the wild-type gene. fatA1 mutant strains grew at similar rates when supplemented with elaidate (trans-9-octadecenoate) or oleate (cis-9-octadecenoate). The fat+ strain, however, lysed when supplemented with the trans fatty acid. Physiological characterization of the fatA mutant strain was undertaken. The mutation appeared not to be involved with long-chain fatty acid transport. Introduction of lesions in known fatty acid transport genes abolished trans fatty acid utilization in the fatA mutant strain. Also, growth characteristics of the fat+ and the fatA1 mutant strains on elaidate as the sole carbon source were identical, which indicated comparables rate of fatty acid accumulation. The mutation appeared to be involved with recognition of the trans configuration after uptake into the cell. The levels of trans fatty acid incorporation into the phospholipids of the fat+ and the fatA strains differed considerably, with the mutant incorporating much higher levels. No significant accumulation of elaidate into nonphospholipid cellular components was observed. The fatA mutation did not appear to be involved with the cellular metabolic state, as cyclic AMP had no effect on the ability of the strains to utilize trans fatty acids.  相似文献   

16.
When long-chain unsaturated fatty acids such as oleic, linoleic, and linolenic acid were incubated with crude enzymes from the marine green alga Ulva pertusa, the corresponding (R)-2-hydroperoxy acids were formed with a high enantiomeric excess (>99%).  相似文献   

17.
Candida albicans, grown aerobically in glucose-containing media, produced C14, C16 and C18 saturated long-chain alcohols only after the end of exponential growth. Contents of C14 alcohols were always lowest, and C16 and C18 alcohol contents about equal. Contents of all three classes of alcohol increased as the concentration of glucose in aerobic cultures harvested after 168 h incubation was raised from 1.0 to 30.0% (w/v). However, in 168 h anaerobic cultures, greatest long-chain alcohol contents in organisms were obtained using media containing 10% (w/v) glucose. Substituting glucose (10%, w/v) with the same concentration of galactose in aerobic cultures greatly decreased contents of long-chain alcohols, while inclusion of 10% (w/v) glycerol virtually abolished their synthesis. Supplementing anaerobic cultures with odd-chain fatty acids induced synthesis of odd-chain alcohols. Maximum conversion of fatty acid to the corresponding long-chain alcohol was observed with heptadecanoic acid. The effect of glucose on production of heptadecanol from exogenously provided heptadecanoic acid was similar to that observed on synthesis of the three major even-chain alcohols in media lacking a fatty-acid supplement. Cell-free extracts of organisms catalysed in vitro conversion of palmitoyl-CoA to 1-hexadecanol.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号