共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular phylogeny of gobioid fishes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences 总被引:4,自引:0,他引:4
The molecular phylogeny of the gobioid fishes, comprising 33 genera and 43 valid species, was examined by use of complete mitochondrial 12S rRNA and tRNA(VAL)genes. Both parsimony and neighbor-joining analyses revealed comparable results and are generally congruent with those of morphological studies. The Odontobutis, which was always placed at the base of the phylogenetic trees, can be treated as a sister group of all other nonrhyacichthyid gobioids. Within eleotrid fishes, the monophyly of the Eleotrinae is strongly supported by molecular data. The Butinae is closer to fishes with five branchiostegal rays and should be treated as a sister group of the latter. The group with five branchiostegal rays, except for sicydiines, can be divided into two groups according to their epural counts. Fish with one epural, the Gobiinae of Pezold plus Microdesmidae, form a monophyletic group which is sister to those with two epurals, the Oxudercinae and Gobionellinae of Pezold. However, Sicydiinae, which have one epural, are closer to the Oxudercinae and Gobionellinae rather than to the Gobiinae. Since progressive reduction in epural number has been observed along this lineage, the sicydiines should be treated as a derived group within the groups with two epurals. 相似文献
2.
Neumann K Michaux J Lebedev V Yigit N Colak E Ivanova N Poltoraus A Surov A Markov G Maak S Neumann S Gattermann R 《Molecular phylogenetics and evolution》2006,39(1):135-148
Despite some popularity of hamsters as pets and laboratory animals there is no reliable phylogeny of the subfamily Cricetinae available so far. Contradicting views exist not only about the actual number of species but also concerning the validity of several genera. We used partial DNA sequences of two mitochondrial (cytochrome b, 12S rRNA) and one partial nuclear gene (von Willebrand Factor exon 28) to provide a first gene tree of the Cricetinae based on 15 taxa comprising six genera. According to our data, Palaearctic hamsters fall into three distinct phylogenetic groups: Phodopus, Mesocricetus, and Cricetus-related species which evolved during the late Miocene about 7-12MY ago. Surprisingly, the genus Phodopus, which was previously thought to have appeared during the Pleistocene, forms the oldest clade. The largest number of extant hamster genera is found in a group of Cricetus-related hamsters. The genus Cricetulus itself proved to be not truly monophyletic with Cricetulus migratorius appearing more closely related to Tscherskia, Cricetus, and Allocricetulus. We propose to place the species within a new monotypic genus. Molecular clock calculations are not always in line with the dating of fossil records. DNA based divergence time estimates as well as taxonomic relationships demand a reevaluation of morphological characters previously used to identify fossils and extant hamsters. 相似文献
3.
Molecular phylogeny of the family Pectinidae (Mollusca: Bivalvia) based on mitochondrial 16S and 12S rRNA genes 总被引:11,自引:0,他引:11
Pectinidae is a large bivalve family characterised by almost circular, flat shells. Species are distributed worldwide and fall into three life-styles: swimming, byssally attached to hard substrates, and cemented to rocks with one valve. Despite these very different life strategies, pectinid shells are highly conservative in shape and offer few clues for the unravelling of phylogenetic issues. Consequently, phylogenetic studies based on morphological features have not yielded conclusive results. We thus set out to analyse partial sequences of mitochondrial 12S and 16S rRNA genes from 23 species of 16 genera with molecular techniques. The results are largely in contrast, both at the genus and the subfamily level, with the systematic classifications based on adult morphological characters, whereas they agree with the morphological classifications based on the more conserved non-adaptive features. 相似文献
4.
Molecular phylogeny of the nasuta subgroup of Drosophila based on 12S rRNA, 16S rRNA and CoI mitochondrial genes, RAPD and ISSR polymorphisms 总被引:1,自引:0,他引:1
The nasuta subgroup is a cluster of morphologically almost similar forms with a wide range of geographic distribution. During the last three decades nature of inter-relationship among the members has been investigated at different levels of organization. The phylogenetic relationships of the members of the nasuta subgroup of the immigrans species group of Drosophila was made by employing Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeats-PCR (ISSR-PCR) polymorphisms, mitochondrial 12S rRNA, 16S rRNA and Cytochrome C Oxidase subunit I (CoI) gene sequences. The phylogenetic tree generated by RAPD analysis is in nearly complete congruence with the classification based on morphophenotypic characters. The 12S and 16S rRNA genes were highly conserved across the nasuta subgroup and revealed only 3 and 4 variable sites respectively, of which only one site was informative. The CoI gene, on the other hand, revealed 57 variable sites of which 25 sites were informative. All the three species of orbital sheen complex were included in a major cluster in the phylogenetic trees derived from mitochondrial gene sequence data consistent with the morphophenotypic classification. The CoI analysis placed two species of frontal sheen complex, D. n. nasuta and D. n. albomicans in two different clades and this is inconsistent with morphological classification. The molecular clock suggested that divergence between the kohkoa complex and the albomicans complex occurred approximately 2.2 MYA, indicating recent evolution of the nasuta subgroup. The higher transition bias in the mitochondrial genes reported in the present study also suggested recent evolution of the nasuta subgroup. 相似文献
5.
Jennifer M. Seddon Peter R. Baverstock Arthur Georges 《Journal of molecular evolution》1998,46(4):460-464
Assertions that the ``conventional' rate of mitochondrial DNA (mtDNA) evolution is reduced in poikilotherms in general and
turtles in particular were tested for side-necked turtles (Pleurodira: Chelidae). Homologous data sets of mitochondrial 12S
rRNA gene sequences were used to compare the average divergence between the Australian and South American species for two
Gondwanan groups: the chelid turtles and the marsupials. The mean nucleotide divergences between continental groups for both
the turtles and the marsupials are remarkably similar. These data suggest that the rate of evolution of mitochondrial 12S
rRNA gene is not substantially slower in turtles than in the homeothermic marsupials.
Received: 24 February 1997 / Accepted: 30 June 1997 相似文献
6.
Michael A. Nedbal Rodney L. Honeycutt Duane A. Schilitter 《Journal of Mammalian Evolution》1996,3(3):201-237
Phylogenetic relationships among major rodent superfamilies traditionally have been difficult to establish because of the apparent high level of convergence and parallelism seen among morphological characters and/or rapid differentiation of rodent groups in the Paleocene/Eocene. Nucleotide sequence data from the mitochondrial 12S rRNA gene were used to clarify phylogenetic relationships among the major groups of rodents as defined by Brandt (1855) and Tullberg (1899). Based on the approximately 800 bp analyzed for the 12S rRNA gene in 59 mammalian species, including 25 of the 32 extant rodent families, the major rodent groups that could be defined as monophyletic clades were the Hystricognathi, the Muroidea, and the Geomyoidea. In addition, support for superfamilial sister-group relationships was found for Aplodontoidea with Sciuroidea and Dipodoidea with Muroidea. 相似文献
7.
Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes 总被引:3,自引:0,他引:3
Portions of two mitochondrial genes (12S and 16S ribosomal RNA) were
sequenced to determine the phylogenetic relationships among the major
clades of snakes. Thirty-six species, representing nearly all extant
families, were examined and compared with sequences of a tuatara and three
families of lizards. Snakes were found to constitute a monophyletic group
(confidence probability [CP] = 96%), with the scolecophidians (blind
snakes) as the most basal lineages (CP = 99%). This finding supports the
hypothesis that snakes underwent a subterranean period early in their
evolution. Caenophidians (advanced snakes), excluding Acrochordus, were
found to be monophyletic (CP = 99%). Among the caenophidians, viperids were
monophyletic (CP = 98%) and formed the sister group to the elapids plus
colubrids (CP = 94%). Within the viperids, two monophyletic groups were
identified: true vipers (CP = 98%) and pit vipers plus Azemiops (CP = 99%).
The elapids plus Atractaspis formed a monophyletic clade (CP = 99%). Within
the paraphyletic Colubridae, the largely Holarctic Colubrinae was found to
be a monophyletic assemblage (CP = 98%), and the Xenodontinae was found to
be polyphyletic (CP = 91%). Monophyly of the henophidians (primitive
snakes) was neither supported nor rejected because of the weak resolution
of relationships among those taxa, except for the clustering of Calabaria
with a uropeltid, Rhinophis (CP = 94%).
相似文献
8.
The phylogenetic status of the infra order Pecora is controversial, even though it is supported by paleontological, morphological, and molecular evidence. We analyzed two mitochondrial genes (i.e., 16S rRNA and cytochrome b) to resolve the phylogenetic position of pecoran species, i.e., the Bovidae, Cervidae, and Moschidae endemic to the Indian subcontinent. We used phylogenetic analysis based on different algorithms, including neighbor joining, maximum parsimony, Bayesian inference, maximum likelihood, minimum evolution, median joining network, along with multidimensional scaling, and DNA word analysis. Our results established the basal position of Tragulidae and the monophyly of the infra order Pecora within the Suborder Ruminantia. Our results also demonstrated that Bovidae, Cervidae, and Moschidae are allied with the placement of musk deer as more closely related to bovids than to cervids. Molecular dating based on sequence analysis shows that the radiation of Pecora occurred during the early Oligocene and that the majority of the pecoran families radiated and dispersed rapidly during the Oligocene/Miocene transition. 相似文献
9.
Molecular phylogeny of the crab genus Brachynotus (Brachyura: Varunidae) based on the 16S rRNA gene 总被引:1,自引:0,他引:1
The crab genus Brachynotus de Haan, 1833 is restricted to the intertidal and shallow subtidal of the Mediterranean and northeastern Atlantic. It is presently recognized to consist of four species, of which three (B. foresti, B. gemmellari and B. sexdentatus) are endemic to the Mediterranean. The fourth species, B. atlanticus, is found along the Atlantic coasts of northern Africa and southern Europe, but also extends into the western Mediterranean. This high level of endemism suggests that speciation within Brachynotus is strongly correlated with the geography and geology of the Mediterranean Sea. A molecular phylogeny based on the mitochondrial large subunit (16S) rRNA gene indicates that the four species of Brachynotus form a monophyletic group within Atlantic Varunidae. The DNA sequence data also show that the genus Brachynotus can be subdivided into two species groups, one comprising B. atlanticus and B. foresti, and the other one B. gemmellari and B. sexdentatus. While B. atlanticus and B. foresti are clearly genetically distinct, B. gemmellari and B. sexdentatus are identical in the studied region of the 16S rRNA gene, suggesting a recent separation or continuing gene flow. 相似文献
10.
The complete 12S rRNA gene of 32 carnivore species, including four feliforms and 28 caniforms, was sequenced. The sequences were aligned on the basis of their secondary structures and used in phylogenetic analyses that addressed several evolutionary relationships within the Caniformia. The analyses showed an unresolved polytomy of the basic caniform clades; pinnipeds, mustelids, procyonids, skunks,Ailurus (lesser panda), ursids, and canids. The polytomy indicates a major diversification of caniforms during a relatively short period of time. The lesser panda was distinct from other caniforms, suggesting its inclusion in a monotypic family, Ailuridae. The giant panda and the bears were joined on the same branch. The skunks are traditionally included in the family Mustelidae. The present analysis, however, showed a less close molecular relationship between the skunks and the remaining Mustelidae (sensu stricto) than between Mustelidae (sensu stricto) and Procyonidae, making Mustelidae (sensu lato) paraphyletic. The results suggest that the skunks should be included in a separate family, Mephitidae. Within the Pinnipedia, the grouping of walrus, sea lions, and fur seals was strongly supported. Analyses of a combined set of 12S rRNA and cytochromeb data were generally consistent with the findings based on each gene. 相似文献
11.
Nucleotide sequence variation in the mitochondrial 12S rRNA gene and the phylogeny of African mole-rats (Rodentia: Bathyergidae). 总被引:3,自引:0,他引:3
Mitochondrial DNA (mtDNA) sequence variation was examined in eight taxa of the African rodent family Bathyergidae, as well as in two taxa representative of the Old-World hystricognathid rodent families Petromyidae and Thryonomyidae. A total of 812 bp, constituting domains I-III of the 12S ribosomal rRNA gene, were compared for each taxon. The high levels of intrafamilial mtDNA sequence divergence observed (average 16.8, range 3.5-23.2) support an ancient origin for the five genera, 20-38 Mya. These data do not support the current subfamilial groupings of the Bathyergidae. The eastern African naked mole-rat, Heterocephalus glaber, is the most basal representative of the family, with the silvery mole-rat, Heliophobius, being the next most basal. South African forms [dune, common, and cape mole-rats (Bathyergus, Cryptomys, and Georychus, respectively)] group together. The independent origin of the common mole-rat, relative to the naked mole-rat, suggests that complex social systems evolved in parallel along different bathyergid lineages. The 12S rRNA gene is not evolving at a higher rate within the rodent lineages, relative to that seen for artiodactyls and primates. Bathyergid rodents appear to fall at an extreme end of the spectrum of mammalian variation, with respect to both transition/transversion ratios and divergence, showing much lower transition/transversion ratios than those previously reported for intrafamilial comparisons. 相似文献
12.
Molecular systematics of the order anaspidea based on mitochondrial DNA sequence (12S, 16S, and COI)
Fragments from three mitochondrial genes (12S, 16S, and COI) were sequenced to reconstruct a molecular phylogeny of the opisthobranch order Anaspidea. The molecular phylogeny supports the placement of the genus Akera, a taxon previously regarded by some authors as a cephalaspidean, within the Anaspidea. Incongruence between the molecular data and the classifications based on morphology suggests that some of the taxonomic characters (i.e., shell, parapodia fusion) traditionally used for the classification of sea hares must be reevaluated, since they may be homoplastic. The ancestral nature of Notarchus based on the molecular evidence suggests that homoplasy may be an explanation for the morphological resemblance of this species to the more derived sea hares with highly fused parapodia and concentrated nerve ganglia. Finally, examples are given of how comparative studies of the evolution of learning mechanisms in the anaspidean clade will benefit from the phylogenetic hypothesis presented in this paper. 相似文献
13.
Phylogeny of hagfish based on the mitochondrial 16S rRNA gene 总被引:8,自引:0,他引:8
The phylogenetic relationships among the species belonging to the family Myxinidae are still debatable. The mitochondrial DNA sequences from the large ribosomal RNA gene may be of great value for systematic and phylogenetic studies within families. Partial sequences of the 16S rRNA gene were obtained for comparisons among the following hagfish species, Paramyxine nelsoni, Paramyxine sheni, Paramyxine taiwanae, Paramyxine yangi, Paramyxine cheni, Eptatretus burgeri, Eptatretus stouii, Eptatretus cirrhatus, Myxine glutinosa, Myxine formosana, Myxine circifrons, Myxine sp1, and Myxine sp2. The boundary of four Paramyxine species (P. sheni, P. taiwanae, P. nelsoni, and P. yangi) from 16S rRNA sequences is ambiguous, however, they are valid based on our unpublished isozyme data as well as the gill aperture arrangement pattern. Both NJ and MP trees constructed from the present molecular data indicate that the genus Paramyxine is diphyletic and Eptatretus paraphyletic. The complexity of Eptatretus and Paramyxine in the clade would not be solved until the farther departed P. cheni is included to form a new clade under the genus Eptatretus. The other clade of Myxininae contains but single genus Myxine. 相似文献
14.
In this study,we determined species-specific variations by analyzing the mitochondrial 12S rRNA gene sequence variation(~440 bp) in 17 newly obtained sequences and 90 published cattle,yak,buffalo,goat,and pig sequences,which represent 62 breeds and 17 geographic regions.Based on the defined species-specific variations,two endonucleases,Alu I and Bfa I,were selected for species authentication using raw meat/tissue samples and the PCR-RFLP method.Goat and pig were identified using the Alu I enzyme,while cattle,yak,and buffalo were identified by digestion with Bfa I.Our approach had relatively high detection sensitivity of cattle DNA in mixed cattle and yak products,with the lowest detectable threshold equaling 20% of cattle DNA in a mixed cattle/yak sample.This method was successfully used to type commercial beef jerky products,which were produced by different companies utilizing various processing technologies.Our results show that several yak jerky products might be implicated in commercial fraud by using cattle meat instead of yak meat. 相似文献
15.
Despite their traditional and continuing prominence in studies of interordinal mammalian phylogenetics, treeshrews (order Scandentia) remain relatively unstudied with respect to their intraordinal relationships. At the same time, significant morphological variation among living treeshrews has been shown to have direct relevance to higher-level interpretations of character state change as reconstructed in traditional interordinal studies, which have often included only a single species of treeshrew. Therefore, the importance of resolving relationships among treeshrews extends well beyond a better understanding of patterns of diversification within the order. A recent review highlighted several shortcomings in published studies of treeshrew phylogenetics based on morphology. Here we present the first investigation of treeshrew phylogenetics based on DNA sequences, utilizing previously published sequences from the mitochondrial 12S rRNA gene and combining them with newly generated sequence data from 15 species. Parsimony, likelihood, and Bayesian analyses all strongly support a sister relationship between Ptilocercus and the remaining species, further substantiating its recent elevation to familial status. Dendrogale is consistently recovered as the next taxon to diverge, but relationships among the remaining taxa are poorly supported by these data. We provide evidence for a relatively rapid radiation within the genera Tupaia and Urogale, but limited resolution precludes more than a cursory interpretation of biogeographic patterns. 相似文献
16.
Rostami Nejad M Nazemalhosseini Mojarad E Nochi Z Fasihi Harandi M Cheraghipour K Mowlavi GR Zali MR 《Journal of helminthology》2008,82(4):343-347
Parasite strain characterization is essential for the establishment of a prevention and control strategy in any endemic area. The aim of this study was to characterize different Echinococcus granulosus isolates from Iran by using DNA sequences of the mitochondrial 12S rRNA gene. Thirty livers and lungs of cattle, sheep and goats naturally infected with E. granulosus were collected from abattoirs in northern and western Iran between June and October 2007. These samples yielded 18 fertile cysts which we used for the genetic work. We designed and tested two new primer pairs which specifically amplify portions of the mitochondrial 12S rRNA gene of the two strains (G1 and G6) of E. granulosus known to occur in Iran. One primer pair amplified a fragment of 259 base pairs (bp) from only the G1 strain. The second pair amplified a fragment of 676 bp from the G6 strain. The G1 genotype was identified in all fertile cyst samples, in agreement with previous studies in Iran. Ten of our samples and a single reference sample of the G6 strain were sequenced and compared with the G1 and G6 sequences deposited in GenBank. 相似文献
17.
The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of suborder Suiformes. However, the monophyly of the suborder Ruminantia was not supported, and the branching pattern between Cetacea and the artiodactyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced, but the relationships between Artiodactyla, Cetacea, and Perissodactyla remained unresolved. Nevertheless, we found no support for a Perissodactyla + Hyracoidea clade, neither with distance approach, nor with parsimony reconstruction. The 12S rRNA was useful to solve intraordinal relationships among Ungulata, but it seemed to harbor too few informative positions to decipher the bushlike radiation of some Ungulata orders, an event which has most probably occurred in a short span of time between 55 and 70 MYA.
Correspondence to: E. Douzery 相似文献
18.
从线粒体基因探讨中国大头蛙群的分类及其属内地位 总被引:6,自引:0,他引:6
Partial sequences of the mitochondrial 12S rRNA and 16S rRNA gene were determined for 8 populations of three species of Chinese Limnonectes, and aligned with the published sequences of Limnonectes from other parts of the world. When Nanorana parker, Paa boulengeri, Fejervarya limnocharis and Hoplobatrachus rugulosus was used as outgroup taxa (Accession Nos. AY158705, AY313685, AF206111, AF206491, AY322311). The sequences of the 12S rRNA and 16S rRNA genes totaled 950 nueleotide positions with gaps including 510 variable sites. We reconstructed phylogenetie trees using Clustal X 1.8, Mega 2.1 and PHYLIP 3.5e software, and using the maximum parsimony and maximum likelihood methods, respectively. Our analyses suggest that these fanged frogs from China are another monophyletie group in addition to the four monophyletie groups identified by previous studies. The Chinese Limnonectes were grouped into three elades (BCL 55% ). The first elade contains one species (BCL 100% ), from a population of Limnoneetes fragilis from Hainan Province. The second contains four individuals (BCL 100% ), i. e. two populations of Limnonectes kuhlii from Yunnan Province. The third contains one species (BCL 100% ), i. e. five populations of Limnonectes fujianensis from Fujian Province and 1 from Taiwan Province. The resulted phylogenetie trees indicate L. fragilis is basal to L. kuhlii L. fujianensis 。 相似文献
19.
A rapid PCR-RFLP analysis was designed to identify 3 closely related species of hairtails: Trichiurus lepturus, T. japonicus, and Trichiurus sp. 2, basing on partial sequence data (600 bp) of the mitochondrial DNA encoding the 16S ribosomal RNA (16S rRNA) gene. Restriction digestion analysis of the unpurified PCR products of these 3 species, using EcoRI and VspI endonucleases, generated reproducible species-specific restriction patterns showing 2 fragments (250 bp and 350 bp) for T. lepturus in EcoRI digestion and 2 fragments (196 bp and 404 bp) for T. japonicus in VspI digestion, whereas no cleavage was observed for Trichiurus sp. 2 in both EcoRI and VspI digestions. The PCR-RFLP technique developed in this study proved to be a rapid, reliable and simple method that enables easy and accurate identification of these 3 closely related species of the genus Trichiurus. 相似文献
20.
Bacterial phylogeny based on 16S and 23S rRNA sequence analysis 总被引:28,自引:0,他引:28
Abstract: Molecular phylogeny increasingly supports the understanding of organismal relationships and provides the basis for the classification of microorganisms according to their natural affiliations. Comparative sequence analysis of ribosomal RNAs or the corresponding genes currently is the most widely used approach for the reconstruction of microbial phylogeny. The highly and less conserved primary and higher order structure elements of rRNAs document the history of microbial evolution and are informative for definite phylogenetic levels. An optimal alignment of the primary structures and a careful data selection are prerequisites for reliable phylogenetic conclusions. rRNA based phylogenetic trees can be reconstructed and the significance of their topologies evaluated by applying distance, maximum parsimony and maximum likelihood methods of phylogeny inference in comparison, and by fortuitous or directed resampling of the data set. Phylogenetic trees based on almost equivalent data sets of bacterial 23S and 16S rRNAs are in good agreement and their overall topologies are supported by alternative phylogenetic markers such as elongation factors and ATPase subunits. Besides their phylogenetic information content, the differently conserved primary structure regions of rRNAs provide target sites for specific hybridization probes which have been proven to be powerful tools for the identification of microbes on the basis of their phylogenetic relationships. 相似文献