首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases.  相似文献   

2.
Using different chromatographic techniques, eight cellulolytic enzymes were isolated from the culture broth of a mutant strain of Chrysosporium lucknowense: six endoglucanases (EG: 25 kD, pI 4.0; 28 kD, pI 5.7; 44 kD, pI 6.0; 47 kD, pI 5.7; 51 kD, pI 4.8; 60 kD, pI 3.7) and two cellobiohydrolases (CBH I, 65 kD, pI 4.5; CBH II, 42 kD, pI 4.2). Some of the isolated cellulases were classified into known families of glycoside hydrolases: Cel6A (CBH II), Cel7A (CBH I), Cel12A (EG28), Cel45A (EG25). It was shown that EG44 and EG51 are two different forms of one enzyme. EG44 seems to be a catalytic module of an intact EG51 without a cellulose-binding module. All the enzymes had pH optimum of activity in the acidic range (at pH 4.5-6.0), whereas EG25 and EG47 retained 55-60% of the maximum activity at pH 8.5. Substrate specificity of the purified cellulases against carboxymethylcellulose (CMC), beta-glucan, Avicel, xylan, xyloglucan, laminarin, and p-nitrophenyl-beta-D-cellobioside was studied. EG44 and EG51 were characterized by the highest CMCase activity (59 and 52 U/mg protein). EG28 had the lowest CMCase activity (11 U/mg) amongst the endoglucanases; however, this enzyme displayed the highest activity against beta-glucan (125 U/mg). Only EG51 and CBH I were characterized by high adsorption ability on Avicel cellulose (98-99%). Kinetics of Avicel hydrolysis by the isolated cellulases in the presence of purified beta-glucosidase from Aspergillus japonicus was studied. The hydrolytic efficiency of cellulases (estimated as glucose yield after a 7-day reaction) decreased in the following order: CBH I, EG60, CBH II, EG51, EG47, EG25, EG28, EG44.  相似文献   

3.
A new mutant strain of fungus Trichoderma viride T 100-14 was cultivated on 1% microcrystalline cellulose (Avicel) for 120h and the resulting culture filtrate was prepared for protein identification and purification. To identify the predominant catalytic components, cellulases were separated by an adapted two-dimensional electrophoresis technique. The apparent major spots were identified by high performance liquid chromatography electrospray ionization mass (HPLC-ESI-MS). Seven of the components were previously known, i.e., the endoglucanases Cel7B (EG I), Cel12A (EG III), Cel61A (EG IV), the cellobiohydrolases Cel7A (CBH I), Cel6A (CBH II), Cel6B (CBH IIb) and the beta-glucosidase. The seven major components in the fermentation broth of T. viride T 100-14 probably constitute the essential enzymes for crystalline cellulose hydrolysis and they were further purified to electrophoretic homogeneity by a series of chromatography column. Hydrolysis studies of the purified elements revealed that three of the cellulases were classified as cellobiohydrolases due to their main activities on p-nitrophenyl-beta-d-cellobioside (pNPC). Three of the cellulases, with the abilities of hydrolyzing both carboxymethyl-cellulose (CMC) and Avicel indicate their endoglucanase activities. It deserved noting that the beta-glucosidase from the T 100-14 displayed an extremely high activity on p-nitrophenyl-beta-D-glycopyranoside (pNPG), which suggested it was a good candidate for the conversion of cellobiose to glucose.  相似文献   

4.
The oncogenic Wip1 phosphatase (PPM1D) is induced upon DNA damage in a p53-dependent manner and is required for inactivation or suppression of DNA damage-induced cell cycle checkpoint arrest and of apoptosis by dephosphorylating and inactivating phosphorylated Chk2, Chk1, and ATM kinases. It has been reported that arsenic trioxide (ATO), a potent cancer chemotherapeutic agent, in particular for acute promyelocytic leukemia, activates the Chk2/p53 pathway, leading to apoptosis. ATO is also known to activate the p38 MAPK/p53 pathway. Here we show that phosphatase activities of purified Wip1 toward phosphorylated Chk2 and p38 in vitro are inhibited by ATO in a dose-dependent manner. Furthermore, DNA damage-induced phosphorylation of Chk2 and p38 in cultured cells is suppressed by ectopic expression of Wip1, and this Wip1-mediated suppression can be restored by the presence of ATO. We also show that treatment of acute promyelocytic leukemia cells with ATO resulted in induction of phosphorylation and activation of Chk2 and p38 MAPK, which are required for ATO-induced apoptosis. Importantly, this ATO-induced activation of Chk2/p53 and p38 MAPK/p53 apoptotic pathways can be enhanced by siRNA-mediated suppression of Wip1 expression, further indicating that ATO inhibits Wip1 phosphatase in vivo. These results exemplify that Wip1 is a direct molecular target of ATO.  相似文献   

5.
A rational four-step strategy to identify novel bacterial glycosyl hydrolases (GH), in combination with various fungal enzymes, was applied in order to develop tailored enzyme cocktails to efficiently hydrolyze pretreated lignocellulosic biomass. The fungal cellulases include cellobiohydrolase I (CBH I; GH family 7A), cellobiohydrolase II (CBH II; GH family 6A), endoglucanase I (EG I; GH family 7B), and β-glucosidase (βG; GH family 3). Bacterial endocellulases (LC1 and LC2; GH family 5), β-glucosidase (LβG; GH family 1), endoxylanases (LX1 and LX2; GH family 10), and β-xylosidase (LβX; GH family 52) from multiple sources were cloned, expressed, and purified. Enzymatic hydrolysis for varying enzyme combinations was carried out on ammonia fiber expansion (AFEX)-treated corn stover at three total protein loadings (i.e., 33, 16.5, and 11 mg enzyme/g glucan). The optimal mass ratio of enzymes necessary to maximize both glucan and xylan yields was determined using a suitable design of experiments. The optimal hybrid enzyme mixtures contained fungal cellulases (78% of total protein loading), which included CBH I (loading ranging between 9-51% of total enzyme), CBH II (9-51%), EG I (10-50%), and bacterial hemicellulases (22% of total protein loading) comprising of LX1 (13%) and LβX (9%). The hybrid mixture was effective at 50°C, pH 4.5 to maximize saccharification of AFEX-treated corn stover resulting in 95% glucan and 65% xylan conversion. This strategy of screening novel enzyme mixtures on pretreated lignocellulose would ultimately lead to the development of tailored enzyme cocktails that can hydrolyze plant cell walls efficiently and economically to produce cellulosic ethanol.  相似文献   

6.
A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.  相似文献   

7.
Priming with interfon (IFN)alpha enhanced the ability of the synthetic double-stranded RNA polyriboinosinic acid: polyribocytidilic acid (pI:C), but not interleukin-1 beta, to activate both p38 mitogen-activated kinase (MAPK) and extracellular signal-regulated kinase (ERK) signaling cascades. Activation by pI:C in IFN alpha-primed cells was delayed compared to activation with interleukin-1 beta, and this delay was followed by high, sustained activation of p38 MAPK and a modest elevation of ERK activation. Pharmacologic inhibition of either the ERK or the p38 MAPK pathway, using U0126 and SB203580, respectively, reduced interleukin-6 protein induction by at least 70%, and combined inhibition of both pathways fully blocked interleukin-6 protein expression and reduced interleukin-6 mRNA induction by more than 80%. In contrast, induction of double-stranded RNA-activated protein kinase (PKR) mRNA and protein by IFN alpha and/or pI:C was minimally affected by either inhibitor. Induction of interferon-regulatory factor-1 (IRF-1) by pI:C in IFN alpha primed cells was profoundly inhibited by U0126 but not by SB203580. Thus, IFN alpha priming enhances activation of p38 MAPK and ERK pathways by pI:C but not by interleukin-1 beta, thereby enhancing the expression of some, but not all, genes that are induced by pI:C.  相似文献   

8.
Xu X  Malave A 《Life sciences》2000,67(26):3221-3230
Recently mitogen-activated protein kinase (MAPK) has been reported to play an important role in phosphorylation cascades governing cell growth and protein expression in numerous cell types. In order to explore the signaling mechanism by which inducible nitric oxide synthase (iNOS) is regulated in C6 glioma cells, we investigated the role of MAPK in iNOS expression by using the specific MAPK inhibitors. First the induction of nitric oxide by lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFalpha), interferon gamma (IFNgamma), alone or their combination, was studied in C6 glioma cells. Administration of LPS, TNFalpha, or IFNgamma alone had no detectable stimulatory effect on the production of nitric oxide (NO). However, combination of the three factors elicited a significant elevation of NO level in C6 cell culture medium. Subsequently pretreatment of C6 cells with a specific inhibitor of p38 MAPK, SB202190, resulted in a dose-dependent inhibition of NO production and iNOS expression, but PD98059, an inhibitor of p42/p44 MAPK activation, had no effect. These data suggest that p38 MAPK mediates iNOS expression in C6 glioma cells, but p42/p44 MAPK is not involved in this process.  相似文献   

9.
Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products formed during pretreatment impede accurate quantification of individual glycosyl hydrolases (GH) binding to pretreated cell walls. A high-throughput fast protein liquid chromatography (HT-FPLC)-based method has been developed to quantify cellobiohydrolase I (CBH I or Cel7A), cellobiohydrolase II (CBH II or Cel6A), and endoglucanase I (EG I or Cel7B) present in hydrolyzates of untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated corn stover (CS). This method can accurately quantify individual enzymes present in complex binary and ternary protein mixtures without interference from plant cell wall-derived components. The binding isotherms for CBH I, CBH II, and EG I were obtained after incubation for 2 h at 4 °C. Both AFEX and dilute acid pretreatment resulted in increased cellulase binding compared with untreated CS. Cooperative binding of CBH I and/or CBH II in the presence of EG I was observed only for AFEX treated CS. Competitive binding between enzymes was found for certain other enzyme-substrate combinations over the protein loading range tested (i.e., 25-450 mg/g glucan). Langmuir single-site adsorption model was fitted to the binding isotherm data to estimate total available binding sites E(bm) (mg/g glucan) and association constant K(a) (L/mg). Our results clearly demonstrate that the characteristics of cellulase binding depend not only on the enzyme GH family but also on the type of pretreatment method employed.  相似文献   

10.
WHATMAN 1 CHR filter paper manufactured from macerated cotton fibers was shown to be a soft substrate when broken down by purified cellulases of Trichoderma reesei (CELLUCLAST). Destruction of filter-paper disks was induced by CBH I/1, CBH I/2, CBH II/1, CBH II/2, and EG I in a macroscopic assay. Attack on disks by mixtures of these cellulases (CBH I/1 or CBH I/2 mixed with CBH II/1, CBH II/2, or with EGJ) were followed by synergistically enhanced destructions. SCHLEICHER &SCHUELL filter paper No 595 was shown to be a harder substrate of enzymatical decomposition when induced by cellulases of CELLUCLAST. None of the cellulases could induce macroscopic destruction of filter-paper disks when acting in isolation. However, mixtures of isolated exo and endo-glucanases (CBH I/1 or CBH I/2 mixed with CBH II/1, CBH II/2, or EG I) caused powerful destruction of filter-paper disks. SCHLEICHER &SCHUELL filter paper No 595 incubated first with an endo-glucanase (CBH II/1, CBH II/2, EG I) and treated in a secondary incubation with an exo-glucanase (CBH I/1, CBH I/2) were destroyed to a greater extent than with incubations executed in the reverse order. Results confirm the endo exo concept of explaining cellulose decomposition. The filter-paper destruction assay was performed with filter-paper disks prepared with an office punch. Disks were incubated in 1 ml EPPENDORF reaction tubes filled up beforehand with 0.4 or 0.5 ml of enzyme solution. The degree of synergism of cellulases resulted from the assay in the range of 300 to 1 300 p.c.  相似文献   

11.
12.
Monoclonal antibodies have been used to determine the presence of cellobiohydrolases I and II (CBH I and II), and endoglucanase I (EG I) on the surface of conidia from Trichoderma reesei QM 9414 and RUT C-30, and 8 other Trichoderma species. For this purpose, proteins were released from the conidial surface by treatment with a non-ionic detergent (Triton X-100 and -octylglucoside), followed by SDS-PAGE/Western blotting and immunostaining. Both CBH I and II were clearly present, but — unlike in extracellular culture fluids from Trichoderma — CBH II was the predominant cellulase. In T. reesei EG I could not be detected. The higher producer strain T. reesei RUT C-30 exhibited a higher conidial level of CBH II than T. reesei QM 9414. In order to assess the importance of the conidial CBH II level for cellulase induction by cellulose, multiple copies of the chb2 gene were introduced into the T. reesei genome by cotransformation using PyrG as a marker. Stable multicopy transformants secreted the 2- to 4-fold level of CBH II into the culture medium when grown on lactose as a carbon source, but their CBH I secretion was unaltered. Upon growth on cellulose, both CBH I and CBH II secretion was enhanced. Those strain showing highest cellulase activity on cellulose also appeared to contain the highest level of conidial bound CBH II. CBH II was also the predominant conidial cellulase in various other Trichoderma sp. However, roughly the same amount of conidial bound CBH II was detected in all strains, although their cellulase production differed considerably.  相似文献   

13.
Nine major cellulolytic enzymes were isolated from a culture broth of a mutant strain of the fungus Penicillium verruculosum: five endo-1, 4-β-glucanases (EGs) having molecular masses 25, 33, 39, 52, and 70 kDa, and four cellobiohydrolases (CBHs: 50, 55, 60, and 66 kDa). Based on amino acid similarities of short sequenced fragments and peptide mass fingerprinting, the isolated enzymes were preliminary classified into different families of glycoside hydrolases: Cel5A (EG IIa, 39 kDa), Cel5B (EG IIb, 33 kDa), Cel6A (CBH II, two forms: 50 and 60 kDa), Cel7A (CBH I: 55 and 66 kDa), Cel7B (EG I: 52 and 70 kDa). The 25 kDa enzyme was identical to the previously isolated Cel12A (EG III). The family assignment was further confirmed by the studies of the substrate specificity of the purified enzymes. High-molecular-weight forms of the Cel6A, Cel7A, and Cel7B were found to possess a cellulose-binding module (CBM), while the catalytically active low-molecular-weight forms of the enzymes, as well as other cellulases, lacked the CBM. Properties of the isolated enzymes, such as substrate specificity toward different polysaccharides and synthetic glycosides, effect of pH and temperature on the enzyme activity and stability, adsorption on Avicel cellulose and kinetics of its hydrolysis, were investigated.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) signaling is regulated by assembling distinct scaffold complexes at the plasma membrane and on endosomes. Thus, spatial resolution might be critical to determine signaling specificity. Therefore, we investigated whether epidermal growth factor receptor (EGFR) traffic through the endosomal system provides spatial information for MAPK signaling. To mislocalize late endosomes to the cell periphery we used the dynein subunit p50 dynamitin. The peripheral translocation of late endosomes resulted in a prolonged EGFR activation on late endosomes and a slow down in EGFR degradation. Continuous EGFR signaling from late endosomes caused sustained extracellular signal-regulated kinase and p38 signaling and resulted in hyperactivation of nuclear targets, such as Elk-1. In contrast, clustering late endosomes in the perinuclear region by expression of dominant active Rab7 delayed the entry of the EGFR into late endosomes, which caused a delay in EGFR degradation and a sustained MAPK signaling. Surprisingly, the activation of nuclear targets was reduced. Thus, we conclude that appropriate trafficking of the activated EGFR through endosomes controls the spatial and temporal regulation of MAPK signaling.  相似文献   

15.
Ganoderma lucidum is one of most widely used herbal medicine and functional food in Asia, and ganoderic acids (GAs) are its active ingredients. Regulation of GA biosynthesis and enhancing GA production are critical to using G. lucidum as a medicine. However, regulation of GA biosynthesis by various signaling remains poorly understood. This study investigated the role of apoptosis signaling on GA biosynthesis and presented a novel approach, namely apoptosis induction, to increasing GA production. Aspirin was able to induce cell apoptosis in G. lucidum, which was identified by terminal deoxynucleotidyl transferase mediated dUPT nick end labeling assay positive staining and a condensed nuclear morphology. The maximum induction of lanosta-7,9(11), 24-trien-3α-01-26-oic acid (ganoderic acid 24, GA24) production and total GA production by aspirin were 2.7-fold and 2.8-fold, respectively, after 1 day. Significantly lower levels of GA 24 and total GAs were obtained after regular fungal culture for 1.5 months. ROS accumulation and phosphorylation of Hog-1 kinase, a putative homolog of MAPK p38 in mammals, occurred after aspirin treatment indicating that both factors may be involved in GA biosynthetic regulation. However, aspirin also reduced expression of the squalene synthase and lanosterol synthase coding genes, suggesting that these genes are not critical for GA induction. To the best of our knowledge, this is the first report showing that GA biosynthesis is linked to fungal apoptosis and provides a new approach to enhancing secondary metabolite production in fungi.  相似文献   

16.
Although the Arabidopsis thaliana genome contains genes encoding 20 mitogen-activated protein kinases (MAPKs) and 10 MAPK kinases (MAPKKs), most of them are still functionally uncharacterized. In this work, we analyzed the function of the group B MAPK kinase, MKK3. Transgenic ProMKK3:GUS lines showed basal expression in vascular tissues that was strongly induced by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000) infection but not by abiotic stresses. The growth of virulent Pst DC3000 was increased in mkk3 knockout plants and decreased in MKK3-overexpressing plants. Moreover, MKK3 overexpression lines showed increased expression of several PR genes. By yeast two-hybrid analysis, coimmunoprecipitation, and protein kinase assays, MKK3 was revealed to be an upstream activator of the group C MAPKs MPK1, MPK2, MPK7, and MPK14. Flagellin-derived flg22 peptide strongly activated MPK6 but resulted in poor activation of MPK7. By contrast, MPK6 and MPK7 were both activated by H(2)O(2), but only MPK7 activation was enhanced by MKK3. In agreement with the notion that MKK3 regulates the expression of PR genes, ProPR1:GUS expression was strongly enhanced by coexpression of MKK3-MPK7. Our results reveal that the MKK3 pathway plays a role in pathogen defense and further underscore the importance and complexity of MAPK signaling in plant stress responses.  相似文献   

17.
Leaf wounding and the wound signaling peptide systemin induce expression of wound response genes while the fungal toxin fusicoccin (FC) induces expression of pathogenesis-related genes. Consistent with their functional differences, FC and systemin regulate the extracellular pH in opposite ways, with systemin inducing an alkalinization and FC an acidification response. Here we show that systemin, wounding and FC activate the same mitogen-activated protein kinases (MAPKs; MPKs) MPK1 and 2 in tomato (Lycopersicon esculentum) leaves and L. peruvianum suspension-cultured cells. Wounding and FC activated an additional MAPK, MPK3. Pronounced differences were observed with regard to MAPK activation kinetics. FC induced prolonged, and systemin transient activity of the MAPKs. This shows that functionally different elicitors engage the same signaling components, yet induce signal-specific activation dynamics. A comparative analysis of pH effects and MAPK activity in response to specific treatments revealed that the kinetics of pH changes and MAPK activation did not correlate. Simultaneous application of FC and systemin did not lead to immediate pH changes but resulted in rapid increases in MAPK activity. Furthermore, changes in extracellular pH could be induced without concomitant MAPK activation by exchanging conditioned medium with fresh medium. This shows that changes in the extracellular pH are neither required nor sufficient for MAPK activation, suggesting that signaling pathways involving MAPKs and extracellular pH changes operate in parallel and are not part of the same linear pathway.  相似文献   

18.
Heat shock protein (HSP) 27 has long been known to be a component of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. p38 MAPK has important functions in the inflammatory response, but the role of HSP27 in inflammation has remained unknown. We have used small interfering RNAs to suppress HSP27 expression in HeLa cells and fibroblasts and found that it is required for pro-inflammatory cell signaling and the expression of pro-inflammatory genes. HSP27 is needed for the activation by interleukin (IL)-1 of TAK1 and downstream signaling by p38 MAPK, JNK, and their activators (MKK-3, -4, -6, -7) and IKKbeta. IL-1-induced ERK activation appears to be independent of HSP27. HSP27 is required for both IL-1 and TNF-induced signaling pathways for which the most upstream common signaling protein is TAK1. HSP27 is also required for IL-1-induced expression of the pro-inflammatory mediators, cyclooxygenase-2, IL-6, and IL-8. HSP27 functions to drive cyclooxygenase-2 and IL-6 expression by augmenting the activation of the kinase downstream of p38 MAPK, MK2, resulting in stabilization of cyclooxygenase-2 and IL-6 mRNAs. The mechanism may not occur in cells of myeloid lineage because HSP27 protein was undetectable in human monocytes and murine macrophages.  相似文献   

19.
Abstract Cellobiohydrolase (CBH, EC 3.2.91) was purified to homogeneity from Trichoderma reesei culture fluids by means of preparative isoelectric focussing (IEF). Its isoelectric points was 4.2. The degradation product of crystalline cellulose (Avicel and cotton) was predominantly cellobiose. The action of purified endoglucanase (EG) and CBH on cellulose microfibrils was followed by transmission electron microscopy (TEM) observations after Pt-C shadowing of the specimen. EG pretreatment of microfibrils resulted in submicrofibril formation. Addition of CBH induced the conversion of submicrofibrils into heterogeneous cellulose clusters and into homogeneous cellulose plaques. One structural effect of CBH was the increase in accessible cellulose surface area, possibly providing intermolecular entrace of water molecules between adjacent cellulose chains. Plaque formation is interpreted as a visible CBH action on crystalline cellulose to form swollen water-insoluble cellulose intermediates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号