首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
In a search for components involved in Mn2+ homeostasis in the budding yeast Saccharomyces cerevisiae, we isolated a mutant with modifications in Mn2+ transport. The mutation was found to be located in HIP1, a gene known to encode a high-affinity permease for histidine. The mutation, designated hip1–272, caused a frameshift that resulted in a stop codon at position 816 of the 1812-bp ORF. This mutation led to Mn2+ resistance, whereas the corresponding null mutation did not. Both hip1–272 cells and the null mutant exhibited low tolerance to divalent cations such as Co2+, Ni2+, Zn2+, and Cu2+. The Mn2+ phenotype was not influenced by supplementary histidine in either mutant, whereas the sensitivity to other divalent cations was alleviated by the addition of histidine. The cellular Mn2+ content of the hip1–272 mutant was lower than that of wild type or null mutant, due to increased rates of Mn2+ efflux. We propose that Hip1p is involved in Mn2+ transport, carrying out a function related to Mn2+ export.  相似文献   

2.
3.
4.
Hydrostatic pressure in the range of 15 to 25 MPa was found to cause arrest of the cell cycle in G(1) phase in an exponentially growing culture of Saccharomyces cerevisiae, whereas a pressure of 50 MPa did not. We found that a plasmid carrying the TAT2 gene, which encodes a high-affinity tryptophan permease, enabled the cells to grow under conditions of pressure in the range of 15 to 25 MPa. Additionally, cells expressing the Tat2 protein at high levels became endowed with the ability to grow under low-temperature conditions at 10 or 15 degrees C as well as at high pressure. Hydrostatic pressure significantly inhibited tryptophan uptake into the cells, and the Tat2 protein level was down-regulated by high pressure. The activation volume associated with tryptophan uptake was found to be a large positive value, 46.2 +/- 3.85 ml/mol, indicating that there was a net volume increase in a rate-limiting step in tryptophan import. The results showing cell cycle arrest in G(1) phase and down-regulation of the Tat2 protein seem to be similar to those observed upon treatment of cells with the immunosuppressive drug rapamycin. Although rapamycin treatment elicited the rapid dephosphorylation of Npr1 and induction of Gap1 expression, hydrostatic pressure did not affect the phosphorylation state of Npr1 and it decreased the level of Gap1 protein, suggesting that the pressure-sensing pathway may be independent of Npr1 function. Here we describe high-pressure sensing in yeast in comparison with the TOR-signaling pathway and discuss an important factor involved in adaptation of organisms to high-pressure environments.  相似文献   

5.
6.
The Candida albicans amino-acid Can1 permease expressed in Saccharomyces cerevisiae is degraded in the vacuole after internalisation by endocytosis. The CaCan1 inactivation and degradation is slow and not inducible by ammonium ions or 'stress' conditions. Using Saccharomyces cerevisiae mutants defective in ubiquitin-protein ligase and ubiquitin-protein hydrolase we have shown that the degradation of heterologous CaCan1 permease is ubiquitin dependent.  相似文献   

7.
The glyoxylate cycle is essential for the utilization of C2 compounds by the yeast Saccharomyces cerevisiae. Within this cycle, isocitrate lyase catalyzes one of the key reactions. We obtained mutants lacking detectable isocitrate lyase activity, screening for their inability to grow on ethanol. Genetic and biochemical analysis suggested that they carried a defect in the structural gene, ICL1. The mutants were used for the isolation of this gene and it was located on a 3.1-kb BglII-SphI DNA fragment. We then constructed a deletion-substitution mutant in the haploid yeast genome. It did not have any isocitrate lyase activity and lacked the ability to grow on ethanol as the sole carbon source. Both strands of a DNA fragment carrying the gene and its flanking regions were sequenced. An open reading frame of 1671 bp was detected, encoding a protein of 557 amino acids with a calculated molecular mass of 62515 Da. The deduced amino acid sequence shows extensive similarities to genes encoding isocitrate lyases from various organisms. Two putative cAMP-dependent protein-kinase phosphorylation sites may explain the susceptibility of the enzyme to carbon catabolite inactivation.  相似文献   

8.
Eukaryotic post-translational arginylation, mediated by the family of enzymes known as the arginyltransferases (ATE1s), is an important post-translational modification that can alter protein function and even dictate cellular protein half-life. Multiple major biological pathways are linked to the fidelity of this process, including neural and cardiovascular developments, cell division, and even the stress response. Despite this significance, the structural, mechanistic, and regulatory mechanisms that govern ATE1 function remain enigmatic. To that end, we have used X-ray crystallography to solve the crystal structure of ATE1 from the model organism Saccharomyces cerevisiae ATE1 (ScATE1) in the apo form. The three-dimensional structure of ScATE1 reveals a bilobed protein containing a GCN5-related N-acetyltransferase (GNAT) fold, and this crystalline behavior is faithfully recapitulated in solution based on size-exclusion chromatography-coupled small angle X-ray scattering (SEC-SAXS) analyses and cryo-EM 2D class averaging. Structural superpositions and electrostatic analyses point to this domain and its domain-domain interface as the location of catalytic activity and tRNA binding, and these comparisons strongly suggest a mechanism for post-translational arginylation. Additionally, our structure reveals that the N-terminal domain, which we have previously shown to bind a regulatory [Fe-S] cluster, is dynamic and disordered in the absence of metal bound in this location, hinting at the regulatory influence of this region. When taken together, these insights bring us closer to answering pressing questions regarding the molecular-level mechanism of eukaryotic post-translational arginylation.  相似文献   

9.
10.
A piece of DNA of the yeast Saccharomyces cerevisiae complementing the uracil permease gene was introduced into a plasmid able to replicate autonomously in Schizosaccharomyces pombe. A strain of S. pombe lacking uracil transport activity was transformed with this new plasmid carrying the gene of S. cerevisiae. The behaviour of the transformant shows not only an expression of the uracil permease gene in the heterologous membrane but also that the transport of uracil is active and coupled to the energy furnishing system of the heterologous host.  相似文献   

11.
12.
Pyruvate uptake in Saccharomyces cerevisiae was not observed at 0 degrees C and was prevented by the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The initial uptake rate of S. cerevisiae kyokai No. 901 was maximum at pH 6 and Km = 4.1 mM. It seemed that lactate inhibited the pyruvate uptake competitively from the results of the Lineweaver-Burk plots. The inhibition constant (Ki) in the presence of 3 mM lactate was 1.6 mM. The pyruvate uptake was inhibited by D-glucose and deoxyglucose, but not by L-glucose, acetate or ethanol. Mutants of laboratory strain No. 5022 ((a) his(2,6), ura3) deficient in pyruvate uptake were isolated from fluoropyruvate resistant mutants. Transformation of the mutant with a yeast genomic library allowed the isolation of the gene JEN1 (YKL217w), which restored pyruvate uptake. Disruption of JEN1 abolished the uptake of pyruvate and gained the resistance against fluoropyruvate. The results indicate that no other monocarboxylate permease is able to efficiently transport pyruvate in S. cerevisiae.  相似文献   

13.
8-Azidoadenine was used as a photoaffinity reagent to characterize the purine-cytosine permease of Saccharomyces cerevisiae. It is a potent competitive inhibitor of cytosine uptake and irradiation of the cells incubated with the label induced the irreversible inactivation of cytosine uptake. Addition of excess cytosine prevented this labelling which was restricted to the outer face of the plasma membrane since it was not accumulated by the cells. In the strain with the amplified purine-cytosine permease gene the maximum cytosine uptake rate was increased 4-5-fold relative to wild type without a modification of the Michaelis constant of uptake (Kt); no uptake could be measured in the deleted strain. The relative amounts of specific labelling determined for the cells and for membrane preparations were 0, 1 and 4 for the null, the wild-type and the amplified strains, respectively. One major band specifically labelled by [3H]azidoadenine, corresponding to a polypeptide with an apparent molecular mass of 45 kDa, was observed in the wild type, amplified in the strain carrying the multicopy plasmid and not detected in the deleted strain. Therefore this polypeptide corresponds to the purine-cytosine permease.  相似文献   

14.
The urea amidolyase (DUR1,2) gene of Saccharomyces cerevisiae.   总被引:5,自引:0,他引:5  
The DNA sequence of the urea amidolyase (DUR1,2) gene from S. cerevisiae has been determined. The polypeptide structure deduced from the DNA sequence contains 1,835 amino acid residues and possesses a calculated weight of 201,665 daltons which favorably correlates with that predicted from compositional analysis of purified protein (1,881 amino acid residues and a molecular weight of 203,900). The C-terminal 57 residues of the polypeptide exhibit significant homology with similarly situated sequences found in five other biotin carboxylases whose primary structures have been determined or deduced from protein and DNA sequence data, respectively. Major S1 nuclease protection fragments derived from DUR1,2 RNA-DNA hybrids exhibit apparent termini at positions -140 and -141 upstream of the coding region. The termini of minor protection fragments also occur at eleven other positions as well.  相似文献   

15.
16.
A 2.1 kb DNA segment carrying the purine-cytosine permease gene (FCY2) of Saccharomyces cerevisiae was sequenced, the primary structure of the protein (533 amino acids) deduced and a folding pattern in the membrane is proposed for the permease protein. Expression of the FCY2 gene product requires a functional secretory pathway and is reduced in mnn9, a mutant strain deficient in outer chain glycosylation. The FCY2 gene was mapped on the right arm of chromosome V close to the HIS1 gene.  相似文献   

17.
In response to nitrogen starvation, diploid cells of the budding yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. This dimorphic transition is regulated by the Galpha protein GPA2, by RAS2, and by elements of the pheromone-responsive MAP kinase cascade, yet the mechanisms by which nitrogen starvation is sensed remain unclear. We have found that MEP2, a high affinity ammonium permease, is required for pseudohyphal differentiation in response to ammonium limitation. In contrast, MEP1 and MEP3, which are lower affinity ammonium permeases, are not required for filamentous growth. Deltamep2 mutant strains had no defects in growth rates or ammonium uptake, even at limiting ammonium concentrations. The pseudohyphal defect of Deltamep2/Deltamep2 strains was suppressed by dominant active GPA2 or RAS2 mutations and by addition of exogenous cAMP, but was not suppressed by activated alleles of the MAP kinase pathway. Analysis of MEP1/MEP2 hybrid proteins identified a small intracellular loop of MEP2 involved in the pseudohyphal regulatory function. In addition, mutations in GLN3, URE2 and NPR1, which abrogate MEP2 expression or stability, also conferred pseudohyphal growth defects. We propose that MEP2 is an ammonium sensor, generating a signal to regulate filamentous growth in response to ammonium starvation.  相似文献   

18.
19.
Maltose transport and maltase activities were inactivated during sporulation of a MAL constitutive yeast strain harboring different MAL loci. Both activities were reduced to almost zero after 5 h of incubation in sporulation medium. The inactivation of maltase and maltose permease seems to be related to optimal sporulation conditions such as a suitable supply of oxygen and cell concentration in the sporulating cultures, and occurs in the fully derepressed conditions of incubation in the sporulation acetate medium. The inactivation of maltase and maltose permease under sporulation conditions in MAL constitutive strains suggests an alternative mechanism for the regulation of the MAL gene expression during the sporulation process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号