首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutually exclusive relationship between ARP and KNOX1 genes in the shoot apical meristem and leaf primordia in simple leaved plants such as Arabidopsis has been well characterized. Overlapping expression domains of these genes in leaf primordia have been described for many compound leaved plants such as Solanum lycopersicum and Cardamine hirsuta and are regarded as a characteristic of compound leaved plants. Here, we present several datasets illustrating the co-expression of ARP and KNOX1 genes in the shoot apical meristem, leaf primordia, and developing leaves in plants with simple leaves and simple primordia. Streptocarpus plants produce unequal cotyledons due to the continued activity of a basal meristem and produce foliar leaves termed “phyllomorphs” from the groove meristem in the acaulescent species Streptocarpus rexii and leaves from a shoot apical meristem in the caulescent Streptocarpus glandulosissimus. We demonstrate that the simple leaves in both species possess a greatly extended basal meristematic activity that persists over most of the leaf’s growth. The area of basal meristem activity coincides with the co-expression domain of ARP and KNOX1 genes. We suggest that the co-expression of ARP and KNOX1 genes is not exclusive to compound leaved plants but is associated with foci of meristematic activity in leaves.  相似文献   

2.
3.
Abstract.— Streptocarpus shows great variation in vegetative architecture. In some species a normal shoot apical meristem never forms and the entire vegetative plant body may consist of a single giant cotyledon, which may measure up to 0.75 m (the unifoliate type) or with further leaves arising from this structure (the rosulate type). A molecular phylogeny of 87 taxa (77 Streptocarpus species, seven related species, and three outgroup species) using the internal transcribed spacers and 5.8S region of nuclear ribosomal DNA suggests that Streptocarpus can be divided into two major clades. One of these broadly corresponds to the caulescent group (with conventional shoot architecture) classified as subgenus Streptocarpella, whereas the other is mainly composed of acaulescent species with unusual architecture (subgenus Streptocarpus). Some caulescent species (such as S. papangae) are anomalously placed with the acaulescent clade. Available cytological data are, however, completely congruent with the two major clades: the caulescent clade is x = 15 and the acaulescent clade (including the caulescent S. papangae) is x = 16 (or polyploid multiples of 16). The genera Linnaeopsis, Saintpaulia, and Schizoboea are nested within Streptocarpus. The sequenced region has evolved, on average, 2.44 times faster in the caulescent clade than in the acaulescent clade and this is associated with the more rapid life cycle of the caulescents. Morphological variation in plant architecture within the acaulescent clade is homoplastic and does not appear to have arisen by unique abrupt changes. Instead, rosulate and unifoliate growth forms have evolved several times, reversals have occurred, and intermediate architectures are found. An underlying developmental plasticity seems to be a characteristic of the acaulescent clade and is reflected in a great lability of form.  相似文献   

4.
Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) genes are expressed in the shoot apical meristem (SAM) to effect its formation and maintenance. KNOX1 genes are also involved in leaf shape control throughout angiosperm evolution. Leaves can be classified as either simple or compound, and KNOX1 expression patterns in leaf primordia are highly correlated with leaf shape; in most simple-leafed species, KNOX1 genes are expressed only in the SAM but not in leaf primordia, while in compound-leafed species they are expressed both in the SAM and leaf primordia. How can KNOX1 expression be maintained to a high degree in the SAM, but simultaneously be so variable in leaves? This dichotomy suggests that the processes of leaf and SAM development have been compartmentalized during evolution. Here, we introduce our findings regarding the regulation of expression of SHOOT MERISTEMLESS, a KNOX1 gene, together with a brief review of KNOX1 genes from an evolutionary viewpoint. We also present our findings regarding another aspect of KNOX1 regulation via a protein–protein interaction network involved in the natural variation in leaf shape. Both aspects of KNOX1 regulation could be utilized for fine-tuning leaf morphology during evolution without affecting the essential function of KNOX genes in the shoot.  相似文献   

5.
Jasinski S  Kaur H  Tattersall A  Tsiantis M 《Planta》2007,226(5):1255-1263
Leaves of seed plants can be described as simple, where the leaf blade is entire, or dissected, where the blade is divided into distinct leaflets. Both simple and dissected leaves are initiated at the flanks of a pluripotent structure termed the shoot apical meristem (SAM). In simple-leafed species, expression of class I KNOTTED1-like homeobox (KNOX) proteins is confined to the meristem while in many dissected leaf plants, including tomato, KNOX expression persists in leaf primordia. Elevation of KNOX expression in tomato leaves can result in increased leaflet number, indicating that tight regulation of KNOX expression may help define the degree of leaf dissection in this species. To test this hypothesis and understand the mechanisms controlling leaf dissection in tomato, we studied the clausa (clau) and tripinnate (tp) mutants both of which condition increased leaflet number phenotypes. We show that TRIPINNATE and CLAUSA act together, to restrict the expression level and domain of the KNOX genes Tkn1 and LeT6/Tkn2 during tomato leaf development. Because loss of CLAU or TP activity results in increased KNOX expression predominantly on the adaxial (upper) leaf domain, our observations indicate that CLAU and TP may participate in a domain-specific KNOX repressive system that delimits the ability of the tomato leaf to generate leaflets.  相似文献   

6.
In higher plants, determinate leaf primordia arise in regular patterns on the flanks of the indeterminate shoot apical meristem (SAM). The acquisition of leaf form is then a gradual process, involving the specification and growth of distinct domains within the three leaf axes. The recessive corkscrew1 (cks1) mutation of maize (Zea mays) disrupts both leaf initiation patterns in the SAM and domain specification within the mediolateral and proximodistal leaf axes. Specifically, cks1 mutant leaves exhibit multiple midribs and leaf sheath tissue differentiates in the blade domain. Such perturbations are a common feature of maize mutants that ectopically accumulate KNOTTED1-like homeobox (KNOX) proteins in leaf tissue. Consistent with this observation, at least two knox genes are ectopically expressed in cks1 mutant leaves. However, ectopic KNOX proteins cannot be detected. We therefore propose that CKS1 primarily functions within the SAM to establish boundaries between meristematic and leaf zones. Loss of gene function disrupts boundary formation, impacts phyllotactic patterns, and leads to aspects of indeterminate growth within leaf primordia. Because these perturbations arise independently of ectopic KNOX activity, the cks1 mutation defines a novel component of the developmental machinery that facilitates leaf-versus-shoot development in maize.  相似文献   

7.
Cardamine hirsuta, a small crucifer closely related to the model organism Arabidopsis thaliana, offers high genetic tractability and has emerged as a powerful system for studying the genetic basis for diversification of plant form. Contrary to A. thaliana, which has simple leaves, C. hirsuta produces dissected leaves divided into individual units called leaflets. Leaflet formation requires activity of Class I KNOTTED1-like homeodomain (KNOX) proteins, which also promote function of the shoot apical meristem (SAM). In C. hirsuta, KNOX genes are expressed in the leaves whereas in A. thaliana their expression is confined to the SAM, and differences in expression arise through cis-regulatory divergence of KNOX regulation. KNOX activity in C. hirsuta leaves delays the transition from proliferative growth to differentiation thus facilitating the generation of lateral growth axes that give rise to leaflets. These axes reflect the sequential generation of cell division foci across the leaf proximodistal axis in response to auxin activity maxima, which are generated by the PINFORMED1 (PIN1) auxin efflux carriers in a process that resembles organogenesis at the SAM. Delimitation of C. hirsuta leaflets also requires the activity of CUP SHAPED COTYLEDON (CUC) genes, which direct formation of organ boundaries at the SAM. These observations show how species-specific deployment of fundamental shoot development networks may have sculpted simple versus dissected leaf forms. These studies also illustrate how extending developmental genetic studies to morphologically divergent relatives of model organisms can greatly help elucidate the mechanisms underlying the evolution of form.  相似文献   

8.
9.
The West Indian species Liabum oblanceolatum Urb. & Ekman was established on the basis of sterile young specimens represented by acaulescent herbs with rosulate leaves. However, these specimens have important traits that do not correspond to Liabum Adans. More than 90 genera of Asteraceae occur in Hispaniola (= Santo Domingo), but only 14 of them include species represented by acaulescent herbs with rosulate or grouped leaves at the base of the stem. From these genera, Chaptalia Vent. and Liabum are the most similar to the types of L. oblanceolatum . Habit, leaf arrangement, lamina shape, leaf margin, leaf surface, leaf margin intrasection, leaf venation, leaf pubescence, leaf trichomes, stomata and upper surface leaf cuticle were analysed in the type specimens of L. oblanceolatum and in species of Chaptalia and Liabum of Hispaniola. The vegetative trichomes are described in detail. The analysis reveals that the type specimens of L. oblanceolatum fit with all the vegetative traits of Chaptalia angustata Urb. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 479–486.  相似文献   

10.
Members of the class 1 knotted-like homeobox (KNOX) gene family are important regulators of shoot apical meristem development in angiosperms. To determine whether they function similarly in seedless plants, three KNOX genes (two class 1 genes and one class 2 gene) from the fern Ceratopteris richardii were characterized. Expression of both class 1 genes was detected in the shoot apical cell, leaf primordia, marginal part of the leaves, and vascular bundles by in situ hybridization, a pattern that closely resembles that of class 1 KNOX genes in angiosperms with compound leaves. The fern class 2 gene was expressed in all sporophyte tissues examined, which is characteristic of class 2 gene expression in angiosperms. All three CRKNOX genes were not detected in gametophyte tissues by RNA gel blot analysis. Arabidopsis plants overexpressing the fern class 1 genes resembled plants that overexpress seed plant class 1 KNOX genes in leaf morphology. Ectopic expression of the class 2 gene in Arabidopsis did not result in any unusual phenotypes. Taken together with phylogenetic analysis, our results suggest that (a) the class 1 and 2 KNOX genes diverged prior to the divergence of fern and seed plant lineages, (b) the class 1 KNOX genes function similarly in seed plant and fern sporophyte meristem development despite their differences in structure, (c) KNOX gene expression is not required for the development of the fern gametophyte, and (d) the sporophyte and gametophyte meristems of ferns are not regulated by the same developmental mechanisms at the molecular level.  相似文献   

11.
12.
13.
14.
Hay A  Jackson D  Ori N  Hake S 《Plant physiology》2003,131(4):1671-1680
Expression of KNOX (KNOTTED1-like homeobox) genes in the shoot apical meristem of Arabidopsis is required for maintenance of a functional meristem, whereas exclusion of KNOX gene expression from leaf primordia is required for the elaboration of normal leaf morphology. We have constructed a steroid-inducible system to regulate both the amount and timing of KN1 (KNOTTED1) misexpression in Arabidopsis leaves. We demonstrate that lobed leaf morphology is produced in a dose-dependent manner, indicating that the amount of KN1 quantitatively affects the severity of lobing. The KN1-glucocorticoid receptor fusion protein is not detected in leaves in the absence of steroid induction, suggesting that it is only stable when associated with steroid in an active state. By using a second inducible fusion protein to mark exposure of leaf primordia to the steroid, we determined the stage of leaf development that produces lobed leaves in response to KN1. Primordia as old as plastochron 7 and as young as plastochron 2 were competent to respond to KN1.  相似文献   

15.
Tsuda K  Ito Y  Sato Y  Kurata N 《The Plant cell》2011,23(12):4368-4381
Self-maintenance of the shoot apical meristem (SAM), from which aerial organs are formed throughout the life cycle, is crucial in plant development. Class I Knotted1-like homeobox (KNOX) genes restrict cell differentiation and play an indispensable role in maintaining the SAM. However, the mechanism that positively regulates their expression is unknown. Here, we show that expression of a rice (Oryza sativa) KNOX gene, Oryza sativa homeobox1 (OSH1), is positively regulated by direct autoregulation. Interestingly, loss-of-function mutants of OSH1 lose the SAM just after germination but can be rescued to grow until reproductive development when they are regenerated from callus. Double mutants of osh1 and d6, a loss-of-function mutant of OSH15, fail to establish the SAM both in embryogenesis and regeneration. Expression analyses in these mutants reveal that KNOX gene expression is positively regulated by the phytohormone cytokinin and by KNOX genes themselves. We demonstrate that OSH1 directly binds to five KNOX loci, including OSH1 and OSH15, through evolutionarily conserved cis-elements and that the positive autoregulation of OSH1 is indispensable for its own expression and SAM maintenance. Thus, the maintenance of the indeterminate state mediated by positive autoregulation of a KNOX gene is an indispensable mechanism of self-maintenance of the SAM.  相似文献   

16.
Plant morphology is specified by leaves and flowers, and the shoot apical meristem (SAM) defines the architecture of plant leaves and flowers. Here, we reported the characterization of a soybean KNOX gene GmKNT1, which was highly homologous to Arabidopsis STM. The GmKNT1 was strongly expressed in roots, flowers and developing seeds. Its expression could be induced by IAA, ABA and JA, but inhibited by GA or cytokinin. Staining of the transgenic plants overexpressing GmKNT1-GUS fusion protein revealed that the GmKNT1 was mainly expressed at lobe region, SAM of young leaves, sepal and carpel, not in seed and mature leaves. Scanning electron micros- copy (SEM) disclosed multiple changes in morphology of the epidermal cells and stigma. The transgenic Arabidopsis plants overexpress- ing the GmKNT1 showed small and lobed leaves, shortened internodes and small clustered inflorescence. The lobed leaves might result from the function of the meristems located at the boundary of the leaf. Compared with wild type plants, transgenic plants had higher ex- pression of the SAM-related genes including the CUP, WUS, CUC1, KNAT2 and KNAT6. These results indicated that the GmKNT1 could affect multiple aspects of plant growth and development by regulation of downstream genes expression.  相似文献   

17.
For identification of genes involved in embryogenesis in the model cereal rice, we have constructed a collection of cDNA libraries of well-defined stages of embryo development before, during and after organ differentiation. Here, we focus on the possible role of KNOX (maize Knotted1-like) class homeobox genes in regulation of rice embryogenesis. Three types of KNOX clones were identified in libraries of early zygotic embryos. Two of these, Oskn2 and Oskn3, encode newly described KNOX genes, whereas the third (Oskn1) corresponds to the previously described OSH1 gene. In situ hybridizations showed that during the early stages of embryo development, all three KNOX genes are expressed in the region where the shoot apical meristem (SAM) is organizing, suggesting that these genes are involved in regulating SAM formation. Whereas OSH1 was previously proposed to function also in SAM maintenance, Oskn3 may be involved in patterning organ positions, as its expression was found to mark the boundaries of different embryonic organs following SAM formation. The expression pattern of Oskn2 suggested an additional role in scutellum and epiblast development. Transgenic expression of Oskn2 and Oskn3 in tobacco further supported their involvement in cell fate determination, like previously reported for Knotted1 and OSH1 ectopic expression. Whereas Oskn3 transformants showed the most pronounced phenotypic effects during vegetative development, Oskn2 transformants showed relatively mild alterations in the vegetative phase but a more severly affected flower morphology. The observation that the KNOX genes produce similar though distinct phenotypic reponses in tobacco, indicates that their gene products act on overlapping but different sets of target genes, or that cell-type specific factors determine their precise action.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号