首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-Deoxy-d-manno-octulosonate 8-phosphate (KDO8P) synthase catalyses the first committed step in the biosynthesis of 3-deoxy-d-manno-octulosonate (KDO), an important component of the lipopolysaccharide of Gram-negative bacteria. The pathway for KDO biosynthesis has been identified as a potential target of antibacterial drug design. The reaction catalysed by KDO8P synthase is an aldol-like condensation between phosphoenolpyruvate (PEP) and d-arabinose 5-phosphate (A5P) and proceeds through a bisphosphorylated tetrahedral intermediate. In this study a bisphosphate analogue of the tetrahedral intermediate was synthesised and was found to inhibit the metal-dependent KDO8P synthase from Neisseriameningitidis and the metal-dependent KDO8P synthase from Acidithiobacillus ferrooxidans with inhibition constants in the low micromolar range. Additionally, monophosphorylated inhibitors were synthesised to determine the relative importance of the two phosphate groups of this bisphosphate analogue for enzyme inhibition. The removal of either of these two phosphate groups gave less potent inhibitors for both enzymes.  相似文献   

2.
The enzymes 3-deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase and 3-deoxy-d-arabino-2-heptulosonate-7-phosphate (DAHP) synthase catalyze a similar aldol-type condensation between phosphoenolpyruvate (PEP) and the corresponding aldose: arabinose 5-phosphate (A5P) and erythrose 4-phosphate (E4P), respectively. While KDO8P synthase is metal-dependent in one class of organisms and metal-independent in another, only a metal-dependent class of DAHP synthases has thus far been identified in nature. We have used catalytically active E and Z isomers of phosphoenol-3-fluoropyruvate [(E)- and (Z)-FPEP, respectively] as mechanistic probes to characterize the differences and/or the similarities between the metal-dependent and metal-independent KDO8P synthases as well as between the metal-dependent KDO8P synthase and DAHP synthase. The direct evidence of the overall stereochemistry of the metal-dependent Aquifex pyrophilus KDO8P synthase (ApKDO8PS) reaction was obtained by using (E)- and (Z)-FPEPs as alternative substrates and by subsequent (19)F NMR analysis of the products. The results reveal the si face addition of the PEP to the re face of the carbonyl of A5P, and establish that the stereochemistry of ApKDO8PS is identical to that of the metal-independent Escherichia coli KDO8P synthase enzyme (EcKDO8PS). In addition, both ApKDO8PS and EcKDO8PS enzymes exhibit high selectivity for (E)-FPEP versus (Z)-FPEP, the relative k(cat)/K(m) ratios being 100 and 33, respectively. In contrast, DAHP synthase does not discriminate between (E)- and (Z)-FPEP (the k(cat)/K(m) being approximately 7 x 10(-)(3) microM(-)(1) s(-)(1) for both compounds). The pre-steady-state burst experiments for EcKDO8PS showed that product release is rate-limiting for the reactions performed with either PEP, (E)-FPEP, or (Z)-FPEP, although the rate constants, for both product formation and product release, were lower for the fluorinated analogues than for PEP [125 and 2.3 s(-)(1) for PEP, 2.5 and 0.2 s(-)(1) for (E)-FPEP, and 9 and 0.1 s(-)(1) for (Z)-FPEP, respectively]. The observed data indicate substantial differences in the PEP subsites and open the opportunity for the design of selective inhibitors against these two families of enzymes.  相似文献   

3.
The enzyme 3-deoxy-D-manno-2-octulosonate-8-phosphate (KDO8P) synthase catalyzes the condensation reaction between phosphoenolpyruvate (PEP) and D-arabinose 5-phosphate (A5P) to produce KDO8P and inorganic phosphate. In attempts to investigate the lack of antibacterial activity of the most potent inhibitor of KDO8P synthase, the amino phosphonophosphate 3, we have synthesized its hydrolytically stable isosteric phosphonate analogue 4 and tested it as an inhibitor of the enzyme. The synthesis of 4 was accomplished in a one step procedure by employing the direct reductive amination in aqueous media between unprotected sugar phosphonate and glyphosate. The analogue 4 proved to be a competitive inhibitor of KDO8P synthase with respect to both substrates A5P and PEP binding. In vitro antibacterial tests against a series of different Gram-negative organisms establish that both inhibitors (3 and 4) lack antibacterial activity probably due to their reduced ability to penetrate the bacterial cell membrane.  相似文献   

4.
The anomeric specificity and the steady-state kinetic mechanism of homogeneous 3-deoxy-D-manno-2-octulosonate-8-phosphate (KDO8P) synthase were investigated. The open-chain 4-deoxy analogue of arabinose-5-phosphate (Ara5P), which is structurally prohibited from undergoing ring closure, was synthesized and tested as a substrate for the synthase. It was found that the analogue functions as a substrate with a similar kcat value to that of the original substrate. The kcat/Km value for the natural substrate is seven-times greater than that of the 4-deoxy analogue. However, taking into account the 9.5% and approximately 1% concentrations of the aldehyde forms of the 4-deoxy analogue and Ara5P in solution, then the 'true' Km values must be in the range 31.5 microM and 0.26 microM, respectively, requiring about a 3 kcal/mol contribution to the binding energy by the 4-hydroxyl group of Ara5P. The data provides evidence that the enzyme acts upon the acyclic form of the natural substrate. The steady-state kinetic study of KDO8P synthase was analyzed via inhibition using the products KDO8P and inorganic phosphate, and D-ribose-5-phosphate as a dead-end inhibitor. First, intersecting lines in double-reciprocal plots of initial-velocity data at substrate concentrations in the micromolar range suggest a sequential mechanism for the enzyme-catalyzed reaction. The inhibition by D-ribose-5-phosphate is competitive for Ara5P and uncompetitive for phosphoenolpyruvate (P-pyruvate). These inhibition patterns are consistent with the model wherein P-pyruvate binding precedes that of Ara5P binding. Furthermore, this order of substrate binding was supported by the observations that KDO8P is a competitive inhibitor for P-pyruvate binding, supporting the concept that KDO8P and P-pyruvate bind to the same enzyme form, and noncompetitively with respect to Ara5P. In addition, the inhibition by inorganic phosphate is noncompetitive with respect to both P-pyruvate and Ara5P, suggesting an apparent ordered release of products such that Pi first, followed by KDO8P. In conclusion, these data suggest a steady-state kinetic mechanism for KDO8P synthase where P-pyruvate binding precedes that of Ara5P, followed by the ordered release of inorganic phosphate and KDO8P.  相似文献   

5.
3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the condensation of phosphoenolpyruvate (PEP) with arabinose 5-phosphate (A5P) to form KDO8P and inorganic phosphate. KDO8P is the phosphorylated precursor of 3-deoxy-D-manno-octulosonate, an essential sugar of the lipopolysaccharide of Gram-negative bacteria. The crystal structure of the Escherichia coli KDO8P synthase has been determined by multiple wavelength anomalous diffraction and the model has been refined to 2.4 A (R-factor, 19.9%; R-free, 23.9%). KDO8P synthase is a homotetramer in which each monomer has the fold of a (beta/alpha)(8) barrel. On the basis of the features of the active site, PEP and A5P are predicted to bind with their phosphate moieties 13 A apart such that KDO8P synthesis would proceed via a linear intermediate. A reaction similar to KDO8P synthesis, the condensation of phosphoenolpyruvate, and erythrose 4-phosphate to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P), is catalyzed by DAH7P synthase. In the active site of DAH7P synthase the two substrates PEP and erythrose 4-phosphate appear to bind in a configuration similar to that proposed for PEP and A5P in the active site of KDO8P synthase. This observation suggests that KDO8P synthase and DAH7P synthase evolved from a common ancestor and that they adopt the same catalytic strategy.  相似文献   

6.
We studied the effects of six catechin derivatives (catechin, epigallocatechin, epicatechin, epicatechin gallate, epigallocatechin gallate (EGCg) and gallocatechin gallate (GCg)) in green tea on the production and extracellular release of Vero toxins (VTs) from enterohemorrhagic Escherichia coli (EHEC) cultured at 37 degrees C for 24 h. EGCg and GCg in the culture medium markedly inhibited extracellular VTs release from EHEC cells into the culture supernatant fluid at concentrations of 0.05 mg/ml or higher, as estimated by both the reversed passive latex agglutination assay and cytotoxic assay using Vero cells. Production and extracellular release of maltose binding protein, a periplasmic protein, into the culture supernatant were also inhibited by EGCg and GCg, indicating that their inhibitory effect on release from periplasm into the outer milieu is not specific to VTs, but general to the proteins accumulated in EHEC periplasm.  相似文献   

7.
The aim of this study is to evaluate the therapeutic effect of the antimicrobial agents, fosfomycin (FOM), minocycline (MINO), kanamycin (KM) and norfloxacin (NFLX) in the enterohemorrhagic Escherichia coli (EHEC) infected mouse model which we established previously (Infect. Immun. 62 (1994) 3447-3453). Each of the antimicrobial agents, 1/16 LD(50), was given to the mice per os (p.o. ) or intraperitoneally (i.p.) for 3 days after bacterial inoculation and then we observed their mortality rate for 2 weeks. The mortality rates of mice administered with MINO (p.o./i.p.), KM (p.o.), NFLX (p. o./i.p.) were significantly lower than those of the control group. Both the bacterial number and VT2c level in the feces of the FOM group were lower than those of the NFLX group on day 1, but reversed on day 3. In an in vitro experiment, each of the four drugs in combination with mitomycin C (MMC) caused a more significant decrease in the bacterial number than sole MMC, and they consequently indicated the suppressive effect on the release of VT2c.  相似文献   

8.
KDO8PS (3-deoxy-D-manno-2-octulosonate-8-phosphate synthase) and DAH7PS (3-deoxy-D-arabino-2-heptulosonate-7-phosphate synthase) are attractive targets for the development of new anti-infectious agents. Both enzymes appear to proceed via a common mechanism involving the reaction of phosphoenolpyruvate (PEP) with arabinose 5-phosphate or erythrose-4-phosphate, to produce the corresponding ulosonic acids, KDO8P and DAH7P, respectively. The synthesis of new inhibitors closely related to the supposed tetrahedral intermediate substrates for the enzymes is described. The examination of the antibacterial activity of these derivatives is reported.  相似文献   

9.
The enzyme 3-deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase is metal-dependent in one class of organisms and metal-independent in another. We have used a rapid transient kinetic approach combined with site-directed mutagenesis to characterize the role of the metal ion as well as to explore the catalytic mechanisms of the two classes of enzymes. In the metal-dependent Aquifex pyrophilus KDO8P synthase, Cys11 was replaced by Asn (ApC11N), and in the metal-independent Escherichia coli KDO8P synthase a reciprocal mutation, Asn26 to Cys, was prepared (EcN26C). The ApC11N mutant retained about 10% of the wild-type maximal activity in the absence of metal ions. Addition of divalent metal ions did not affect the catalytic activity of the mutant enzyme and its catalytic efficiency (kcat/Km) was reduced by only approximately 12-fold, implying that the ApC11N KDO8P synthase mutant has become a bone fide metal-independent enzyme. The isolated EcN26C mutant had similar metal content and spectral properties as the metal-dependent wild-type A. pyrophilus KDO8P synthase. EDTA-treated EcN26C retained about 6% of the wild-type activity, and the addition of Mn2+ or Cd2+ stimulated its activity to approximately 30% of the wild-type maximal activity. This suggests that EcN26C KDO8P synthase mutant has properties similar to that of metal-dependent KDO8P synthases. The combined data indicate that the metal ion is not directly involved in the chemistry of the KDO8P synthase catalyzed reaction, but has an important structural role in metal-dependent enzymes in maintaining the correct orientation of the substrates and/or reaction intermediate(s) in the enzyme active site.  相似文献   

10.
The enzyme 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the reaction between phosphoenolpyruvate and arabinose 5-phosphate (A5P) in the first committed step in the biosynthetic pathway for the formation of 3-deoxy-D-manno-octulosonate, an important component in the cell wall of Gram-negative bacteria. KDO8P synthase is evolutionarily related to the first enzyme of the shikimate pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthase, which uses erythrose 4-phosphate in place of A5P. The A5P binding site in KDO8P synthase is formed by three long loops that extend from the core catalytic (β/α)(8) barrel, β2α2, β7α7, and β8α8. The extended β7α7 loop is always present in KDO8P synthase yet is not observed for DAH7P synthase. Modeling of this loop indicated interactions between this loop and the extended β2α2 loop; both loops provide key hydrogen-bonding contacts with A5P. The two absolutely conserved residues on the β7α7 loop (Gln and Ser) were mutated to Ala in both the metal-dependent KDO8P synthase from Acidithiobacillus ferrooxidans and the metal-independent KDO8P synthase from Neisseria meningitidis. In addition, mutants were constructed for both enzymes with the extended β7α7 loop excised to match the DAH7P synthase architecture. Removal of the loop extension severely hindered efficient catalysis, dramatically increasing the K(m)(A5P) and reducing the k(cat) for both enzymes. Excision of the complete loop was far more detrimental to catalysis than the double mutations of the two conserved Gln and Ser residues. Therefore, the presence of the entire extended β7α7 loop is important for efficient catalysis by KDO8P synthase, with the loop acting to promote efficient and productive binding of A5P.  相似文献   

11.
CMP is known to activate phosphatidylinositol (PtdIns)/inositol (Ins) base exchange and has been reported to activate reversal of PtdIns synthase also. Because it is possible that PtdIns synthase acting in the reverse direction, followed by re-incorporation of ambient Ins, could be responsible for base-exchange activity, we characterized these processes in rat pituitary GH3 cells. In permeabilized GH3 cells prelabelled with [3H]Ins and incubated in buffer with LiCl but without added Ins, CMP stimulated rapid accumulation of [3H]Ins and decreases in [3H]PtdIns; the Km for CMP was 1.7 mM. CDP and CTP were less effective, whereas 2'-CMP, 3'-CMP, other nucleoside monophosphates and cytidine did not influence this process. In permeabilized cells prelabelled to isotopic equilibrium with [3H]Ins and [32P]Pi, CMP stimulated decreases in both the 32P and 3H labelling of PtdIns, but did not increase that of [32P]phosphatidic acid. These findings demonstrate that in the absence of added Ins the effect of CMP is not via activation of base exchange nor via a phospholipase D, but by reversal of PtdIns synthase. In permeabilized cells prelabelled with [3H]Ins and [32P]Pi, unlabelled Ins inhibited loss of 32P labelling of PtdIns caused by CMP while markedly stimulating loss of 3H labelling of PtdIns and release of [3H]Ins. These data demonstrate that Ins inhibits reversal of PtdIns synthase, but stimulates base exchange. We conclude that in GH3 cells reversal of PtdIns synthase and PtdIns/Ins base exchange are both stimulated by CMP, but are distinct processes.  相似文献   

12.
The relationship between 3-deoxy-D-manno-2-octulosonic acid 8-phosphate (KDO 8-P) synthase and 3-deoxy-D-arabino-2-heptulosonic acid 7-phosphate (DAH 7-P) synthase has not been adequately addressed in the literature. Based on recent reports of a metal requiring KDO 8-P synthase and the newly solved X-ray crystal structures of both Escherichia coli KDO 8-P synthase and DAH 7-P synthase, we begin to address the evolutionary kinship between these catalytically similar enzymes. Using a maximum likelihood-based grouping of 29 KDO 8-P synthase sequences, we demonstrate the existence of a new class of KDO 8-P synthase, the members of which we propose to require a metal cofactor for catalysis. Similarly, we hypothesize a class of DAH 7-P synthase that does not have the metal requirement of the heretofore model E. coli enzyme. Based on this information and a careful investigation of the reported X-ray crystal structures, we also propose that KDO 8-P synthase and DAH 7-P synthase are the product of a divergent evolutionary process from a common ancestor.  相似文献   

13.
3-Deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase catalyzes the net condensation of phosphoenolpyruvate and d-arabinose 5-phosphate to form KDO8P and inorganic phosphate (Pi). Two classes of KDO8P synthases have been identified. The Class I KDO8P synthases (e.g. Escherchia coli KDO8P synthase) catalyze the condensation reaction in a metal-independent fashion, whereas the Class II enzymes (e.g. Aquifex aeolicus) require metal ions for catalysis. Helicobacter pylori (H. pylori) KDO8P synthase, a Zn2+-dependent metalloenzyme, has recently been found to be a Class II enzyme and has a high degree of clinical significance since it is an attractive molecular target for the design of novel antibiotic therapy. Although the presence of a divalent metal ion in Class II KDO8P synthases is essential for catalysis, there is a paucity of mechanistic information on the role of the metal ions and functional differences as compared with Class I enzymes. Using H. pylori KDO8P synthase as a prototypical Class II enzyme, a steady-state and transient kinetic approach was undertaken to understand the role of the metal ion in catalysis and define the kinetic reaction pathway. Metal reconstitution experiments examining the reaction kinetics using Zn2+, Cd2+, Cu2+, Co2+, Mn2+, and Ni2+ yielded surprising results in that the Cd2+ enzyme has the greatest activity. Unlike Class-I KDO8P synthases, the Class II metallo-KDO8P synthases containing Zn2+, Cd2+, Cu2+, and Co2+ show cooperativity. This study presents the first detailed kinetic characterization of a metal-dependent Class II KDO8P synthase and offers mechanistic insight for how the divalent metal ions modulate catalysis through effects on chemistry as well as quaternary protein structure.  相似文献   

14.
The proposed cyclic mechanism of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase and the mechanism of chorismate mutase share certain structural and electronic similarities. In this report, we examine several inhibitors of chorismate mutase for their efficacy against KDO 8-P synthase.  相似文献   

15.
Intracellular microelectrode measurements revealed that the liverwort Conocephalum conicum generates all-or-none action potentials (APs) in response to a sudden temperature drop. In plants with anion and potassium conductance blocked, dose-dependent voltage transients (VTs) were evoked by cold stimuli. These VTs did not propagate. When the external concentration of Ca(2+) was decreased or calcium channel inhibitors (La(3+), Gd(3+), verapamil, Mg(2+), Mn(2+)) were used, inhibition of VTs was observed. Amplitudes of both APs and VTs grew when Sr(2+) ions, known to release calcium from internal stores, were added to the medium. Neomycin, which suppresses phospholipase C and indirectly affects inositol triphosphate formation, caused substantial inhibition of both APs and VTs. It is concluded that a temperature drop elucidated membrane potential changes due to calcium influx both from external and internal stores.  相似文献   

16.
[18O]3-Deoxy-D-manno-octulosonate (KDO), labeled at the anomeric oxygen, was prepared by exchange with [18O]H2O and used to follow the route of oxygen transfer during cytidine 5'-monophosphate-3-deoxy-D-manno-octulosonate (CMP-KDO) formation catalyzed by 3-deoxy-D-manno-octulosonate cytidylyl-transferase (CMP-KDO synthetase). The 31P-NMR signal of the phosphoryl group of CMP-KDO (-5.85 ppm), which appeared as a single resonance when CMP-KDO formation took place with unenriched KDO, appeared as two peaks when CMP-KDO formation took place in the presence of a mixture of [16O]-and [18O]KDO. These results demonstrate the retention of 18O during CMP-KDO formation. Confirmation that the labeled oxygen in CMP-KDO was retained in the "bridge" position between CMP and KDO came from 13C-NMR studies of CMP-KDO formed in the presence of 90% [2-13C, 18O] KDO. The prominent C-2 KDO resonance in CMP-KDO, which is normally a doublet at 101.4 ppm (Kohlbrenner, W.E., and Fesik, S.W. (1985) J. Biol. Chem. 260, 14695-14700), appeared as four peaks when a mixture of [2-13C,16O]- and [2-13C, 18O]KDO was used, confirming the direct bonding of 18O to the C-2 of KDO in CMP-KDO. These results are consistent with a nucleophilic displacement mechanism for CMP-KDO formation.  相似文献   

17.
The enzymes 3-deoxy-d-manno-octulosonic acid-8-phosphate synthase (KDO8PS) and 3-deoxy-d-arabino-heptulosonic acid-7-phosphate synthase (DAHPS) catalyze analogous condensation reactions between phosphoenolpyruvate and d-arabinose 5-phosphate or d-erythrose 4-phosphate, respectively. While several similarities exist between the two enzymatic reactions, classic studies on the Escherichia coli enzymes have established that DAHPS is a metalloenzyme, whereas KDO8PS has no metal requirement. Here, we demonstrate that KDO8PS from Aquifex aeolicus, representing only the second member of the KDO8PS family to be characterized in detail, is a metalloenzyme. The recombinant KDO8PS, as isolated, displays an absorption band at 505 nm and contains approximately 0.4 and 0.2-0.3 eq of zinc and iron, respectively, per enzyme subunit. EDTA inactivates the enzyme in a time- and concentration-dependent manner and eliminates the absorption at 505 nm. The addition of Cu(2+) to KDO8PS produces an intense absorption at 375 nm, while neither Co(2+) nor Ni(2+) produce such an effect. The EDTA-treated enzyme is reactivated by a wide range of divalent metal ions including Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(2+), Mg(2+), Mn(2+), Ni(2+), and Zn(2+) and is reversibly inhibited by higher concentrations (>1 mm) of certain metals. Analysis of several metal forms of the enzyme by plasma mass spectrometry suggests that the enzyme preferentially binds one, two, or four metal ions per tetramer. These observations strongly suggest that A. aeolicus KDO8PS is a metalloenzyme in vivo and point to a previously unrecognized relationship between the KDO8PS and DAHPS families.  相似文献   

18.
The mechanism of 3-deoxy-D-manno-octulosonate-8-phosphate (KDO8P) synthase was investigated. When [18O]-PEP specifically labeled in the enolic oxygen is a substrate for KDO8P synthase, the 18O is recovered in Pi. This indicates that the KDO8P synthase reaction proceeds with C-O bond cleavage of PEP similar to that observed in the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase catalyzed condensation of PEP and erythrose-4-phosphate (1). No evidence for a covalent enzyme-PEP intermediate could be obtained. No [32P]-Pi exchange into PEP nor scrambling of bridge 18O to non-bridging positions in [18O]-PEP was observed in the presence or absence of arabinose-5-phosphate or its analog ribose-5-phosphate. Bromopyruvate inactivated KDO8P synthase in a time dependent process. It is likely that bromopyruvate reacts with a functional group at the PEP binding site since PEP, but not arabinose-5-phosphate, protects against inactivation.  相似文献   

19.
We have studied the effects on bone of three structurally dissimilar non-steroidal anti-inflammatory drugs which inhibit prostaglandin cyclo-oxygenase activity (PGH synthase); indomethacin, flurbiprofen, and piroxicam. We used cultures of half calvaria from neonatal or fetal rats to measure effects on PGE2 production, measured by radioimmunoassay. In four day neonatal rat calvaria, indomethacin inhibited PGE2 release into the medium by 80% at 10(-8) M, while flurbiprofen and piroxicam produced similar inhibition at 10(-6) M. However, at 10(-10) M, treatment with all three compounds resulted in an increase in medium PGE2 concentration of 60 to 120%. To assess the mechanism of this effect, bones were labeled with [3H]-arachidonic acid, washed and cultured in the presence or absence of piroxicam. At 10(-6) M, piroxicam inhibited production of cyclo-oxygenase products and arachidonic acid release. However, at 10(-10) M, there was a substantial increase in labeled products, particularly PGE2, despite a further decrease in arachidonic acid release. In 21 day fetal rat cultures, flurbiprofen was found to increase PGE2 release both in control cultures and cultures which had been incubated with cortisol (10(-8) M) to reduce endogenous arachidonic acid release and supplied with exogenous arachidonic acid (10(-5) M) to provide a substrate. These results indicate that three potent inhibitors of PGH synthase can, paradoxically, increase prostaglandin production at low concentrations. The effect does not appear to be due to increased arachidonic acid release, and could be due to increased PGH synthase activity.  相似文献   

20.
3-Deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between three-carbon phosphoenolpyruvate (PEP) and five-carbon d-arabinose 5-phosphate (A5P), generating KDO8P, a key intermediate in the biosynthetic pathway to 3-deoxy-D-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Both metal-dependent and metal-independent forms of KDO8PS have been characterized. KDO8PS is evolutionarily and mechanistically related to the first enzyme of the shikimate pathway, the obligately divalent metal ion-dependent 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) that couples PEP and four-carbon D-erythrose 4-phosphate (E4P) to give DAH7P. In KDO8PS, an absolutely conserved KANRS motif forms part of the A5P binding site, whereas in DAH7PS, an absolutely conserved KPR(S/T) motif accommodates E4P. Here, we have characterized four mutants of this motif (AANRS, KAARS, KARS, and KPRS) in metal-dependent KDO8PS from Acidithiobacillus ferrooxidans and metal-independent KDO8PS from Neisseria meningitidis to test the roles of the universal Lys and the Ala-Asn portion of the KANRS motif. The X-ray structures, determined for the N. meningitidis KDO8PS mutants, indicated no gross structural penalty resulting from mutation, but the subtle changes observed in the active sites of these mutant proteins correlated with their altered catalytic function. (1) The AANRS mutations destroyed catalytic activity. (2) The KAARS mutations lowered substrate selectivity, as well as activity. (3) Replacing KANRS with KARS or KPRS destroyed KDO8PS activity but did not produce a functional DAH7PS. Thus, Lys is critical to catalysis, and other changes are necessary to switch substrate specificity for both the metal-independent and metal-dependent forms of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号