首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The low density lipoprotein (LDL) receptor gene was analyzed in 67 unrelated healthy Japanese and 38 members of six consecutive families with familial hypercholesterolemia (FH) by Southern blot hybridization with TaqI, an LDL receptor cDNA fragment containing exons 1 to 8 being used as a probe. A new TaqI RFLP at the LDL receptor locus was detected with allele frequencies of 0.67 and 0.33. The data obtained with smaller cDNA subfragment probes revealed that the TaqI RFLP site is located within 1.1 kb of the 5 side of the EcoRI site of exon 5. The TaqI RFLP was in linkage disequilibrium with the PstI RFLP but showed no significant linkage disequilibrium with the RFLPs for AvaII, ApaLI/I15, PvuII, NcoI, and ApaLI/3. Among the seven RFLPs at the LDL receptor locus, the TaqI RFLP was the only useful genetic marker in one of the six families with FH. Furthermore, the association of an additional TaqI 1.5-kb band with a mutant LDL receptor gene was observed in another family with FH in which the proband was homozygous for all of the seven RFLPs. The data obtained with various restriction enzymes and smaller cDNA subfragments probes suggested that a minor change in nucleotide sequences in the region including exons 5 to 8 is present in the mutant gene. These data suggest that the TaqI RFLP is a useful genetic marker at the LDL receptor locus and that TaqI serves for the analysis of some mutant LDL receptor genes, when used with small LDL receptor cDNA probes.  相似文献   

2.
We describe a four-generation kindred with familial hypercholesterolemia (FH) in which two of the eight heterozygotes for a 5-kb deletion (exons 2 and 3) in the low density lipoprotein (LDL) receptor gene were found to have normal LDL-cholesterol levels. In our search for a gene responsible for the cholesterol-lowering effect in this family, we have studied variation in the genes encoding the LDL receptor, apolipoprotein (apo) B, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, apoAI-CIII-AIV, and lipoprotein lipase. The analysis showed that it was unlikely that variation in any of these genes was responsible for the cholesterol-lowering effect. Expression of the LDL receptor, as assessed in vitro with measurements of activity and mRNA levels, was similar in normo and hyperlipidemic subjects carrying the deletion. Analysis of the apo E isoforms revealed that most of the e2 allele carriers in this family, including the two normolipidemic 5-kb deletion carriers, were found to have LDL-cholesterol levels substantially lower than subjects with the other apo E isoforms. Thus, this kindred provides evidence for the existence of a gene or genes, including the apo e2 allele, with profound effects on LDL-cholesterol levels.C. S. and M. G. contributed equally to this work.  相似文献   

3.
Prenatal diagnosis for familial hypercholesterolaemia (FH) was performed by using restriction fragment length polymorphisms (RFLPs) of the LDL receptor gene on chorionic villi DNA taken during the 10th week of pregnancy. Both parents were FH heterozygotes and had previously had a healthy son and an FH homozygous son. Two RFLPs were informative in this family and revealed that the fetus was unaffected by FH. At birth the child was found to have an LDL cholesterol level of 30 mg/dl and a normal LDL receptor activity in cultured umbilical cord fibroblasts. RFLP analysis on chorionic villi DNA is highly recommended for all heterozygous FH couples in whom the LDL receptor gene mutation/s is/are still to be characterized.  相似文献   

4.
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the low density lipoprotein (LDL) receptor gene. Here, we characterize an LDL receptor mutation that is associated with a distinct haplotype and that causes FH in the Jewish Sephardic population originating from Safed, a town in northern Israel. The mutation was found in eight FH families originating from this community comprising 10% of heterozygote FH index cases screened in Israel. The mutation was not found in four additional FH heterozygotes whose hypercholesterolemia co-segregated with an identical LDL receptor gene haplotype. A guanine to cytosine substitution results in a missense mutation (asp147 to his) in the fourth repeat of the binding domain encoded by exon 4 of the LDL receptor gene. The mutant receptor protein was synthesized in cultured cells as a 120kDa precursor form that failed to undergo normal processing to a mature cell surface form. Most of the receptor precursors were degraded in the endoplasmic reticulum. The small number of mutant receptors on the cell surface were unable to bind LDL or very low density lipoprotein. The abnormal behavior of the mutant receptor was reproduced by site-directed mutagenesis and expression of the mutant protein in CHO cells. The mutation can be diagnosed by allele-specific oligonucleotide hybridization of polymerase chain reaction amplified DNA from FH patients.  相似文献   

5.
Summary Familial hypercholesterolemia (FH), at a prevalence of more than 1 in 100, is at least five times more common in one South African population group than in populations in North America and Europe. Fourteen homozygotic tamilial hypercholesterolemic subjects from this South African group were genotyped for two intragenic DNA restriction fragment length polymorphisms (RFLPs) in the LDL-receptor gene. A Stu I polymorphism is located in exon 8, and a Pvu II polymorphism, in intron 15. Of ten unrelated FH homozygotes genotyped for both RFLPs, nine were homozygous for an S+P- haplotype, and one was heterozygous for an S+P-/S-P+ heplotype. The remaining four were genotyped for Pvu II only and were homozygous for P-. Compared with a previously determined population frequency for the latter, this represents an association (P<0.05) between the frequency for the P- allele and FH in this population, and this finding is consistent with the founder gene effect previously postulated to be present on genealogical and biochemical evidence.  相似文献   

6.
Polymorphic DNA haplotypes at the LDL receptor locus.   总被引:26,自引:8,他引:18       下载免费PDF全文
Mutations in the low-density lipoprotein (LDL) receptor gene result in the autosomal dominant disorder familial hypercholesterolemia (FH). Many different LDL receptor mutations have been identified and characterized, demonstrating a high degree of allelic heterogeneity at this locus. The ability to identify mutant LDL receptor genes for prenatal diagnosis of homozygous FH or to study the role of the LDL receptor gene in polygenic hypercholesterolemia requires the use of closely linked RFLPs. In the present study we used 10 different RFLPs, including three newly described polymorphisms, to construct 123 independent haplotypes from 20 Caucasian American pedigrees. Our sample contained 31 different haplotypes varying in frequency from 0.8% to 29.3%; the five most common haplotypes account for 67.5% of the sample. The heterozygosity and PIC of each site were determined, and these values disclosed that eight of the RFLPs were substantially polymorphic. Linkage-disequilibrium analysis of the haplotype data revealed strong nonrandom associations among all 10 RFLPs, especially among those sites clustered in the 3' region of the gene. Evolutionary analysis suggests the occurrence of both mutational and recombinational events in the generation of the observed haplotypes. A strategy for haplotype analysis of the LDL receptor gene in individuals of Caucasian American descent is presented.  相似文献   

7.
Chae  Jae Jin  Park  Young Bae  Kim  Sung Han  Hong  Sung Soo  Song  Gyun Jee  Han  K. H.  Namkoong  Yong  Kim  Hyo Soo  Lee  C. C. 《Human genetics》1997,99(2):155-163
Twenty-eight unrelated persons heterozygous for familial hypercholesterolemia (FH) were screened to assess the frequency and nature of major structural rearrangements at the low-density lipoprotein (LDL) receptor gene in Korean FH patients. Genomic DNA was analyzed by Southern blot hybridization with probes encompassing exons 1–18 of the LDL receptor gene. Two different deletion mutations (FH29 and FH110) were detected in three FH patients (10.7%). Each of the mutations was characterized by the use of exon-specific probes and detailed restriction mapping mediated by long-PCR (polymerase chain reaction). Mutation FH29 was a 3.83-kb deletion extending from intron 6 to intron 8 and FH110 was a 5.71-kb deletion extending from intron 8 to intron 12. In FH29, the translational reading frame was preserved and the deducible result was a cysteine-rich A and B repeat truncated protein that might be unable to bind LDL but would continue to bind β-VLDL. FH110 is presumed to be a null allele, since the deletion shifts the reading frame and results in a truncated protein that terminates in exon 13. Sequence analysis revealed that both deletions have occurred between two Alu-repetitive sequences that are in the same orientation. This suggested that in these patients the deletions were caused by an unequal crossing over event following mispairing of two Alu sequences on different chromatids during meiosis. Moreover, in both deletions, the recombinations were related to an Alu sequence in intron 8 and the deletion breakpoints are found within a specific sequence, 27 bp in length. This supports the hypothesis that this region might have some intrinsic instability, and act as one of the important factors in large recombinational rearrangements. Received: 3 April 1996 / Revised: 19 August 1996  相似文献   

8.
Summary The human T-cell receptor gamma gene region spans 160 kb genomic DNA. Restriction fragment length polymorphisms (RFLPs) have been previously documented for the constant region (TRGC) genes, the joining (TRGJ) segments and the variable (TRGV) genes. We have recently defined the alleles of the T-cell receptor gamma V, J and C genes and we have described seven haplotypes of the V gamma subgroup I genes characterized either by RFLPs or by deletion or insertion of V gamma genes. The number of VI genes may vary from 7 to 10 per haploid genome, the 9-gene haplotype being the most frequent. Allelic fragments can unambiguously characterize the TRGC2 gene with duplication or triplication of the exon 2. These alleles and haplotypes have been analyzed in four different populations (French, Lebanese, Tunisian and Black African). In this paper, we compare these allele and haplotype frequencies with those found in a Chinese population and we describe new TRGV allelic restriction fragments found only in the Chinese samples. These results and the previous data demonstrate the flexibility of the human T cell receptor gamma locus and the importance of unequal crossing-overs in the evolution of that locus. Moreover, they underline the importance of studying these polymorphisms in population genetics.  相似文献   

9.
The molecular basis of familial hypercholesterolemia (FH) in three families of Spanish descent from La Habana was investigated by the candidate gene approach. The Arg3500Gln mutation of apolipoprotein B-100 was not found. Identification of low density lipoprotein receptor (LDLR) gene haplotypes segregating with FH guided the characterisation of three point mutations by automated sequencing. One, a Val408Met missense mutation, a founder mutation in Afrikaner FH patients, was recurrent, being associated with a distinct DNA haplotype. The other two, Glu256Lys and Val776Met missense mutations, were novel and modified highly conserved residues. These mutations were absent in normolipidemic subjects and were associated in heterozygous carriers with twice the cholesterol levels observed in noncarriers. Noticeably, cardiovascular complications were rarely observed in older heterozygotes, even in those with the Afrikaner FH-2 mutation. These findings confirm the molecular heterogeneity of LDLR gene mutations causing FH and the variability of their expression across different populations.  相似文献   

10.
Copper toxicosis (CT) is an autosomal recessive disorder common in Bedlington terriers. Previously, the CT locus was mapped to canine Chromosome (Chr) 10q26 through linkage to marker C04107. Diagnosis, traditionally based on liver biopsy, has recently shifted to interpretation of the C04107 microsatellite alleles where allele 2 segregates with the disease with 90–95% accuracy. Recently, CT has been attributed to a deletion of exon 2 in the MURR1 gene. We also identified a deletion of exon 2 of MURR1 in our collection of 2-2 homozygous affected terriers. However, our collection also included affected 1-1 homozygotes and 1-2 heterozygotes, and these dogs did not have the homozygous deletion. In addition to C04107, we analyzed an adjacent microsatellite (C04107B), and two novel SNPs, all within intron 1 of MURR1, and sequenced all exons and their intronic boundaries. Pedigree analysis indicates that there are two typical haplotypes, one normal and one affected, maintaining complete linkage disequilibrium between C04107 allele 2 and the deletion in most pedigrees. Most importantly, we identified a recombinant haplotype present in a North American pedigree, where allele 2 is not linked with the deletion, and a fourth haplotype containing a splice site variant. Although the splice site alteration appears to be a normal variant, it is present in two affected dogs, which do not carry homozygous deletions of MURR1.  相似文献   

11.
Summary Molecular genetic studies were undertaken to determine the source of chromosomes carrying the sickle cell allele in Israeli patients. Analysis of restriction fragment length polymorphism (RFLP) patterns (haplotypes) along the -globin gene cluster was performed on 31 sickle chromosomes obtained from 10 unrelated families living in Israel. One is a Caucasian Jewish family, recently found to be carrying the sickle allele, and the other 9 are Arab families of various communities. The Jewish family, previously noted not to carry African red blood cell markers, was discovered to have the most common African haplotype of the -globin gene cluster, Benin. Similarly, 8 of the Arab families were also found to carry the Benin haplotype, whereas the ninth has the CAR (Central African Republic or Bantu) haplotype. The results suggest that sickle alleles in Israel originated in Africa, probably in two different regions, and migrated north into Arab and Jewish populations.  相似文献   

12.
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the low-density-lipoprotein (LDL) receptor. Here we characterize an LDL-receptor founder mutation that is associated with a distinct LDL-receptor haplotype and is responsible for FH in 35% of 71 Jewish-Ashkenazi FH families in Israel. Sixty four percent (16/25) of the Ashkenazi patients who carry this mutant allele were of Lithuanian origin. The mutation was not found in 47 non-Ashkenazi FH families. This mutation was prevalent (8/10 FH cases) in the Jewish community in South Africa, which originated mainly from Lithuania. The mutation, a 3-bp in-frame deletion that would result in the elimination of Gly197, has been previously designated FH-Piscataway. PCR amplification of a DNA fragment that includes the mutation in heterozygous individuals results in the formation of a heteroduplex that can be demonstrated by PAGE and used for molecular diagnosis.  相似文献   

13.
DNA from 40 unrelated familial hypercholesterolemia (FH) heterozygotes were subjected to analyses of single-strand conformation polymorphisms (SSCPs) of exon 10 of the low density lipoprotein receptor (LDLR) gene. Four different SSCP patterns were observed. The underlying mutations were characterized by DNA sequencing. Three of the patterns represented the three genotypes of a recently described sense mutation in codon 450. A method based upon the polymerase chain reaction (PCR) was developed to analyze this mutation. The frequencies of the wild-type (G at nucleotide 1413) and mutant (A at nucleotide 1413) alleles were 0.56 and 0.44, respectively. The fourth pattern was found in only one FH heterozygote and was caused by heterozygosity at nucleotide 1469 (G/A). Nucleotide 1469 is the second base of codon 469Trp(TGG). The GA mutation changes this codon into the amber stop codon, and is referred to as FH469Stop. The mutant receptor consists of the amino terminal 468 amino acids. Because the truncated receptor has lost the membrane-spanning domain, it will not be anchored in the cell membrane. FH469Stop destroys an AvaII restriction site, and this characteristic was used to develop a PCR method to establish its frequency in Norwegian FH subjects. Two out of 204 (1%) unrelated FH heterozygotes possessed the mutation.  相似文献   

14.
Mutations at the hexosaminidase A (HEXA) gene which cause Tay-Sachs disease (TSD) have elevated frequency in the Ashkenazi Jewish and French-Canadian populations. We report a novel TSD allele in the French-Canadian population associated with the infantile form of the disease. The mutation, a GA transition at the +1 position of intron 7, abolishes the donor splice site. Cultured human fibroblasts from a compound heterozygote for this transition (and for a deletion mutation) produce no detectable HEXA mRNA. The intron 7+1 mutation occurs in the base adjacent to the site of the adult-onset TSD mutation (G805A). In both mutations a restriction site for the endonuclease EcoRII is abolished. Unambiguous diagnosis, therefore, requires allele-specific oligonucleotide hybridization to distinguish between these two mutant alleles. The intron 7+1 mutation has been detected in three unrelated families. Obligate heterozygotes for the intron 7+1 mutation were born in the Saguenay-Lac-St-Jean region of Quebec. The most recent ancestors common to obligate carriers of this mutation were from the Charlevoix region of the province of Quebec. This mutation thus has a different geographic centre of diffusion and is probably less common than the exon 1 deletion TSD mutation in French Canadians. Neither mutation has been detected in France, the ancestral homeland of French Canada.  相似文献   

15.
The Quebec population contains about six-million French Canadians, descended from the French settlers who colonized Nouvelle-France between 1608 and 1765. Although the relative genetic contribution of each of these founders is highly variable, altogether they account for the major part of the contemporary French-Canadian gene pool. This study was designed to analyze the role of this founder effect in the introduction and diffusion of the BRCA1 recurrent R1443X mutant allele. A highly conserved haplotype, observed in 18 French-Canadian families and generated using 17 microsatellite markers surrounding the BRCA1 locus, supports the fact that the R1443X mutation is a founder mutation in the Quebec population. We also performed haplotyping analysis of R1443X carriers on 19 other families from seven different nationalities; although the same alleles are shared for three markers surrounding the BRCA1 gene, distinct haplotypes were obtained in four families, suggesting multiple origins for the R1443X mutation. Ascending genealogies of the 18 French Canadian families and of controls were reconstructed on an average depth of 10 generations. We identified the founder couple with the highest probability of having introduced the mutation in the population. Based on the descending genealogy of this couple, we detected the presence of geographical concentration in the diffusion pattern of the mutation. This study demonstrates how molecular genetics and demogenetic analyses can complement each other to provide findings that could have an impact on public health. Moreover, this approach is certainly not unique to breast cancer genetics and could be used to understand other complex traits.Other members of the BCLC Haplotype Group involved in this study are listed in Appendix 1Other members of INHERIT BRCAs involved in this study are listed in Appendix 2H. Vézina and F. Durocher contributed equally to this work and should be regarded as joint first author  相似文献   

16.
Summary Hungarian cystic fibrosis (CF) families (n = 33) including 114 family members have been analysed for the presence of the F508 mutation within the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and have been haplotyped with probes for restriction fragment length polymorphisms (RFLPs) known to be linked to the CFTR gene. The F508 deletion was present in 64% of CF chromosomes. As in many other populations, linkage disequilibrium was found between the CF locus and the haplotype B (XV-2c: allele 1, KM1-9: allele 2), which accounts for 95% of F508 CF chromosomes in our families.  相似文献   

17.
Summary Familial hypercholesterolemia (FH) is an autosomal dominant metabolic disorder caused by several different mutations in the low density lipoprotein (LDL) receptor gene. This large number of different mutations, often undetectable in Southern blotting, makes it impossible directly to diagnose the disease. However, restriction fragment length polymorphisms (RFLPs) can be used to follow the inheritance of the defective gene in FH families. In the present study, we report the use of three RFLPs, detected by PvuII, ApaLI and AvaII restriction enzymes, to determine the haplotypes of normal and defective LDL receptor genes in 61 families with FH and in 128 normal individuals. Two of the nine haplotypes were significantly more often associated with the affected genes, whereas one was significantly less frequent. Although none of the associations was strong enough to allow diagnosis in individuals, it was possible, using the three RFLPs, to identify the haplotype of the affected gene in 57 families and to carry out unequivocal diagnosis in 67% of the cases. In four families, PvuII and AvaII detected an abnormal fragment co-segregating with the disease, thus increasing the percentage of diagnosis to 73.4% of the cases.  相似文献   

18.
Summary A sample of 235 individuals from 49 French cystic fibrosis (CF) families with at least one living affected child was typed with probes for restriction fragment length polymorphisms (RFLPs) known to be linked to the CF gene, and was screened for the ΔF508 mutation. Using a combination of six probes, 44 out of the 49 families were sufficiently informative to enable prenatal diagnosis or carrier determination. As in many other populations, linkage disequilibrium was found between the CF locus and the haplotype B (XV2c: allele 1; KM19: allele 2), which accounts for about 78% of CF chromosomes in our families. The ΔF508 deletion was present in 64.3% of CF chromosomes.  相似文献   

19.
Summary The 10-kb chromosomal fragment of Streptococus pneumoniae cloned in pLS80 contains the sul-d allele of the pneumococcal gene for dihydropteroate synthase. As a single copy in the chromosome this allele confers resistance to sulfanilamide at 0.2 mg/ml; in the multicopy plasmid it confers resistance to 2.0 mg/ml. The sul-d mutation was mapped by restriction analysis to a 0.4-kb region. By the mechanism of chromosomal facilitation, in which the chromosome restores information to an entering plasmid fragment, a BamHI fragment missing the sul-d region of pLS80 established the full-sized plasmid, but with the sul-s allele of the recipient chromosome.A spontaneous deletion beginning 1.5 kb to the right of the sul-d mutation prevented gene function, possibly by removing a promoter. This region could be restored by chromosomal facilitation and be demonstrated in the plasmid by selection for sulfonamide resistance. Under selection for a vector marker, tetracycline resistance, only the deleted plasmid was detectable, apparently as a result of plasmid segregation and the advantageous growth rates of cells with smaller plasmids. When such cells were selected for sulfonamide resistance, the deleted region returned to the plasmid, presumably by equilibration between the chromosome and the plasmid pool, to give a low frequency (10-3) of cells resistant to sulfanilamide at 2.0 mg/ml. Models for the mechanisms of chromosomal facilitation and equilibration are proposed.Several derivatives of pLS80 could be transferred to Bacillus subtilis, where they conferred resistance to sulfanil-amide at 2 mg/ml, thereby demonstrating cross-species expression of the pneumococcal gene. Transfer of the plasmids to B. subtilis gave rise to large deletions to the left of the sul-d marker, but these deletions did not interfere with the sul-d gene function. Restriction maps of pLS80 and its variously deleted derivatives are presented.  相似文献   

20.
In the present report, we used serological, cellular, and restriction fragment length polymorphism (RFLP) to investigate the DR1 haplotype in the Israeli population. We describe an Israeli homozygous typing cell (HTC), HLA-DwLVA, which defines a new lymphocyte-activating determinant associated with Bw65, DR1 and distinct from Dwl. The parents of this donor, non-Ashkenazi Algerian Jews, are first cousins and share HLA-Cw8, Bw65, BfS, DR1, DQw1, DPw4. No specificity could be assigned to HLA-DwLVA using the 91 Ninth Workshop HTCs. Two families and forty unrelated DR1 individuals were studied with DwLVA and a panel of DR1/Dw1 HTCs. HLA-DwLVA showed segregation as a single determinant within families. This new specificity was present in 24 out of 40 (60%) unrelated DR1 individuals, indicating that in the Israeli population DwLVA is the main lymphocyte-defined determinant associated with the serologically defined DRI specificity, in contrast to non-Jewish Caucasoids where DR1 is significantly associated with Dw1. The vast majority of DwLVA-positive carriers were also Bw65 carriers, indicating that Bw65, DR1, DwLVA may represent a typical allele combination in the Israeli population. The RFLP analysis established the correlation of certain RFLPs with Dw1 and DwLVA. In addition, we describe a cluster of RFLPs that may correspond to a new Dw subtype associated with DR1, for which no serological and cellular reagents have been described so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号