首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used BIAcore to analyze the kinetics of interactions between CD81 and hepatitis C virus (HCV) envelope proteins. We immobilized different forms of HCV envelope proteins (E1E2, E2, and E2(661)) on the sensor and monitored their interaction with injected fusion proteins of CD81 large extracellular loop (CD81LEL) and glutathione-S-transferase (CD81LEL-GST) or maltose binding protein (CD81LEL-MBP). The difference between the GST and MBP fusion proteins was their multimeric and monomeric forms, respectively. The association rate constants between CD81LEL-GST or CD81LEL-MBP and the E1E2, E2 or E2(661) HCV envelope proteins were similar. However, the dissociation rate constants of CD81LEL-MBP were higher than those of CD81LEL-GST. Interestingly, the dissociation rate constant of CD81LEL-GST from E1E2 was much lower than from E2 or E2(661). The interaction between both forms of the CD81LEL fusion proteins and the HCV envelope proteins best-fitted the "heterogeneous ligand" model. This model implies that two kinds of interactions occur between envelope proteins and CD81LEL: one is strong, the other is weak. It also implies that the heterogeneity is likely due to the HCV envelope proteins, which are known to form non-covalently linked heterodimers and disulfide-linked aggregate.  相似文献   

2.
Evidence from clinical and experimental studies of human and chimpanzees suggests that hepatitis C virus (HCV) envelope glycoprotein E2 is a key antigen for developing a vaccine against HCV infection. To identify B-cell epitopes in HCV E2, six murine monoclonal antibodies (MAbs), CET-1 to -6, specific for HCV E2 protein were generated by using recombinant proteins containing E2t (a C-terminally truncated domain of HCV E2 [amino acids 386 to 693] fused to human growth hormone and glycoprotein D). We tested whether HCV-infected sera were able to inhibit the binding of CET MAbs to the former fusion protein. Inhibitory activity was observed in most sera tested, which indicated that CET-1 to -6 were similar to anti-E2 antibodies in human sera with respect to the epitope specificity. The spacial relationship of epitopes on E2 recognized by CET MAbs was determined by surface plasmon resonance analysis and competitive enzyme-linked immunosorbent assay. The data indicated that three overlapping epitopes were recognized by CET-1 to -6. For mapping the epitopes recognized by CET MAbs, we analyzed the reactivities of CET MAbs to six truncated forms and two chimeric forms of recombinant E2 proteins. The data suggest that the epitopes recognized by CET-1 to -6 are located in a small domain of E2 spanning amino acid residues 528 to 546.  相似文献   

3.
Hepatitis C virus (HCV) glycoproteins E1 and E2, when expressed in eukaryotic cells, are retained in the endoplasmic reticulum (ER). C-terminal truncation of E2 at residue 661 or 715 (position on the polyprotein) leads to secretion, consistent with deletion of a proposed hydrophobic transmembrane anchor sequence. We demonstrate cell surface expression of a chimeric glycoprotein consisting of E2 residues 384 to 661 fused to the transmembrane and cytoplasmic domains of influenza A virus hemagglutinin (HA), termed E2661-HATMCT. The E2661-HATMCT chimeric glycoprotein was able to bind a number of conformation-dependent monoclonal antibodies and a recombinant soluble form of CD81, suggesting that it was folded in a manner comparable to "native" E2. Furthermore, cell surface-expressed E2661-HATMCT demonstrated pH-dependent changes in antigen conformation, consistent with an acid-mediated fusion mechanism. However, E2661-HATMCT was unable to induce cell fusion of CD81-positive HEK cells after neutral- or low-pH treatment. We propose that a stretch of conserved, hydrophobic amino acids within the E1 glycoprotein, displaying similarities to flavivirus and paramyxovirus fusion peptides, may constitute the HCV fusion peptide. We demonstrate that influenza virus can incorporate E2661-HATMCT into particles and discuss experiments to address the relevance of the E2-CD81 interaction for HCV attachment and entry.  相似文献   

4.
The E2 glycoprotein of hepatitis C virus (HCV) mediates viral attachment and entry into target hepatocytes and elicits neutralizing antibodies in infected patients. To characterize the structural and functional basis of HCV neutralization, we generated a novel panel of 78 monoclonal antibodies (MAbs) against E2 proteins from genotype 1a and 2a HCV strains. Using high-throughput focus-forming reduction or luciferase-based neutralization assays with chimeric infectious HCV containing structural proteins from both genotypes, we defined eight MAbs that significantly inhibited infection of the homologous HCV strain in cell culture. Two of these bound E2 proteins from strains representative of HCV genotypes 1 to 6, and one of these MAbs, H77.39, neutralized infection of strains from five of these genotypes. The three most potent neutralizing MAbs in our panel, H77.16, H77.39, and J6.36, inhibited infection at an early postattachment step. Receptor binding studies demonstrated that H77.39 inhibited binding of soluble E2 protein to both CD81 and SR-B1, J6.36 blocked attachment to SR-B1 and modestly reduced binding to CD81, and H77.16 blocked attachment to SR-B1 only. Using yeast surface display, we localized epitopes for the neutralizing MAbs on the E2 protein. Two of the strongly inhibitory MAbs, H77.16 and J6.36, showed markedly reduced binding when amino acids within hypervariable region 1 (HVR1) and at sites ~100 to 200 residues away were changed, suggesting binding to a discontinuous epitope. Collectively, these studies help to define the structural and functional complexity of antibodies against HCV E2 protein with neutralizing potential.  相似文献   

5.
We recently reported that retroviral pseudotypes bearing the hepatitis C virus (HCV) strain H and Con1 glycoproteins, genotype 1a and 1b, respectively, require CD81 as a coreceptor for virus-cell entry and infection. Soluble truncated E2 cloned from a number of diverse HCV genotypes fail to interact with CD81, suggesting that viruses of diverse origin may utilize different receptors and display altered cell tropism. We have used the pseudotyping system to study the tropism of viruses bearing diverse HCV glycoproteins. Viruses bearing these glycoproteins showed a 150-fold range in infectivity for hepatoma cells and failed to infect lymphoid cells. The level of glycoprotein incorporation into particles varied considerably between strains, generally reflecting the E2 expression level within transfected cells. However, differences in glycoprotein incorporation were not associated with virus infectivity, suggesting that infectivity is not limited by the absolute level of glycoprotein. All HCV pseudotypes failed to infect HepG2 cells and yet infected the same cells after transduction to express human CD81, confirming the critical role of CD81 in HCV infection. Interestingly, these HCV pseudotypes differed in their ability to infect HepG2 cells expressing a panel of CD81 variants, suggesting subtle differences in the interaction of CD81 residues with diverse viral glycoproteins. Our current model of HCV infection suggests that CD81, together with additional unknown liver specific receptor(s), mediate the virus-cell entry process.  相似文献   

6.
The hepatitis C virus glycoprotein E2 receptor-binding domain is encompassed by amino acids 384 to 661 (E2(661)) and contains two hypervariable sequences, HVR1 and HVR2. E2 sequence comparisons revealed a third variable region, located between residues 570 and 580, that varies widely between genotypes, designated here as igVR, the intergenotypic variable region. A secreted E2(661) glycoprotein with simultaneous deletions of the three variable sequences retained its ability to bind CD81 and conformation-dependent monoclonal antibodies (MAbs) and displayed enhanced binding to a neutralizing MAb directed to E2 immunogenic domain B. Our data provide insights into the E2 structure by suggesting that the three variable regions reside outside a conserved E2 core.  相似文献   

7.
Kitadokoro K 《Uirusu》2004,54(1):39-47
Human CD81, which is belonged to tetraspanin family, has been previously identified as a receptor for the hepatitis C virus envelope E 2 glycoprotein. The crystal structure of the human CD81 long extracellular domain, binding site for E 2 glycoprotein, is presented here at 1.6 A resolution. The tertiary structure of CD81-LEL, which is composed of five alpha-helices, is resemble for a mushroom-shaped molecules (stalk and head subdomains) and forms a dimer in the crystallographic asymmetric unit. The two disulfide bridges, which are conserved all the tetraspanin and are necessary for CD 81-HCV interaction, are stabilizing the conformation of the head domain. This head domain is solvent exposed surface region and is locating the amino acid residues which are essential for the E 2 binding. The hydrophobic cluster in this head domain may suggest that the presence of a docking site for a low complementary surface cavity in the partner E 2 glycoprotein. We proposed that the dimer structure may be important in the interactions of HCV E 2 glycoprotein and also the viral protein may occur in dimeric aggregation on the HCV envelope. This common structural motif of the tetraspanin provides the first insight onto the mechanism of HCV binding to human cell and may be targets for structure-based antiviral drug.  相似文献   

8.
Hepatitis C virus (HCV) glycoprotein E2 binds to human cells by interacting with the CD81 molecule, which has been proposed to be the viral receptor. A correlation between binding to CD81 and species permissiveness to HCV infection has also been reported. We have determined the sequence of CD81 from the tamarin, a primate species known to be refractory to HCV infection. Tamarin CD81 (t-CD81) differs from the human molecule at 5 amino acid positions (155, 163, 169, 180, and 196) within the large extracellular loop (LEL), where the binding site for E2 has been located. Soluble recombinant forms of human CD81 (h-CD81), t-CD81, and African green monkey CD81 (agm-CD81) LEL molecules were analyzed by enzyme-linked immunosorbent assay for binding to E2 glycoprotein. Both h-CD81 and t-CD81 molecules were able to bind E2. Competition experiments showed that the two receptors cross-compete and that the t-CD81 binds with stronger affinity than the human molecule. Recently, h-CD81 residue 186 has been characterized as the critical residue involved in the interaction with E2. Recombinant CD81 mutant proteins were expressed to test whether human and tamarin receptors interacted with E2 in a comparable manner. Mutation of residue 186 (F186L) dramatically reduced the binding capability of t-CD81, a result that has already been demonstrated for the human receptor, whereas the opposite mutation (L186F) in agm-CD81 resulted in a neat gain of binding activity. Finally, the in vitro data were confirmed by detection of E2 binding to cotton-top tamarin (Saguinus oedipus) cell line B95-8 expressing endogenous CD81. These results indicate that the binding of E2 to CD81 is not predictive of an infection-producing interaction between HCV and host cells.  相似文献   

9.
A truncated soluble form of the hepatitis C virus E2 glycoprotein, E2661, binds specifically to the surface of cells expressing human CD81 (hCD81) but not other members of the tetraspanin family (CD9, CD63, and CD151). No differences were noted between the level of E2661 binding to hCD81 expressed on the surface of rat RBL or KM3 cells compared to Daudi and Molt-4 cells, suggesting that additional human-cell-specific factors are not required for the primary interaction of E2 with the cell surface. E2 did not interact with African green monkey (AGM) CD81 on the surface of COS cells, which differs from the hCD81 sequence at four residues within the second extracellular region (EC2) (amino acids [aa] 163, 186, 188, and 196), suggesting that one or more of these residues defines the site of interaction with E2. Various recombinant forms of CD81 EC2 show differences in the ability to bind E2, suggesting that CD81 conformation is important for E2 recognition. Regions of E2 involved in the CD81 interaction were analyzed, and our data suggest that the binding site is of a conformational nature involving aa 480 to 493 and 544 to 551 within the E2 glycoprotein. Finally, we demonstrate that ligation of CD81 by E2661 induced aggregation of lymphoid cells and inhibited B-cell proliferation, demonstrating that E2 interaction with CD81 can modulate cell function.  相似文献   

10.
CD81-dependent binding of hepatitis C virus E1E2 heterodimers   总被引:1,自引:0,他引:1       下载免费PDF全文
Hepatitis C virus (HCV) is the leading cause of chronic liver disease worldwide. HCV is also the major cause of mixed cryoglobulinemia, a B-lymphocyte proliferative disorder. Direct experimentation with native viral proteins is not feasible. Truncated versions of recombinant E2 envelope proteins, used as surrogates for viral particles, were shown to bind specifically to human CD81. However, truncated E2 may not fully mimic the surface of HCV virions because the virus encodes two envelope glycoproteins that associate with each other as E1E2 heterodimers. Here we show that E1E2 complexes efficiently bind to CD81 whereas truncated E2 is a weak binder, suggesting that truncated E2 is probably not the best tool with which to study cellular interactions. To gain better insight into virus-cell interactions, we developed a method by which to isolate E1E2 complexes that are properly folded. We demonstrate that purified E1E2 heterodimers bind to cells in a CD81-dependent manner. Furthermore, engagement of B cells by purified E1E2 heterodimers results in their aggregation and in protein tyrosine phosphorylation, a hallmark of B-cell activation. These studies provide a possible clue to the etiology of HCV-associated B-cell lymphoproliferative diseases. They also delineate a method by which to isolate biologically functional E1E2 complexes for the study of virus-host cell interaction in other cell types.  相似文献   

11.
The envelope glycoprotein E2 of hepatitis C virus (HCV) is the target of neutralizing antibodies and is presently being evaluated as an HCV vaccine candidate. HCV binds to human cells through the interaction of E2 with the tetraspanin CD81, a putative viral receptor component. We have analyzed four different E2 proteins from 1a and 1b viral isolates for their ability to bind to recombinant CD81 in vitro and to the native receptor displayed on the surface of Molt-4 cells. A substantial difference in binding efficiency between these E2 variants was observed, with proteins derived from 1b subtypes showing significantly lower binding than the 1a protein. To elucidate the mechanism of E2-CD81 interaction and to identify critical regions responsible for the different binding efficiencies of the E2 variants, several mutants were generated in E2 protein regions predicted by computer modeling to be exposed on the protein surface. Functional analysis of these E2 derivatives revealed that at least two distinct domains are responsible for interaction with CD81. A first segment centered around amino acid residues 613 to 618 is essential for recognition, while a second element including the two hypervariable regions (HVRs) modulates E2 receptor binding. Binding inhibition experiments with anti-HVR monoclonal antibodies confirmed this mapping and supported the hypothesis that a complex interplay between the two HVRs of E2 is responsible for modulating receptor binding, possibly through intramolecular interactions. Finally, E2 proteins from different isolates displayed a profile of binding to human hepatic cells different from that observed on Molt-4 cells or isolated recombinant CD81, indicating that additional factors are involved in viral recognition by target liver cells.  相似文献   

12.
Hepatitis C virus (HCV) is the leading causative agent of blood-borne chronic hepatitis and is the target of intensive vaccine research. The virus genome encodes a number of structural and nonstructural antigens which could be used in a subunit vaccine. The HCV envelope glycoprotein E2 has recently been shown to bind CD81 on human cells and therefore is a prime candidate for inclusion in any such vaccine. The experiments presented here assessed the optimal form of HCV E2 antigen from the perspective of antibody generation. The quality of recombinant E2 protein was evaluated by both the capacity to bind its putative receptor CD81 on human cells and the ability to elicit antibodies that inhibited this binding (NOB antibodies). We show that truncated E2 proteins expressed in mammalian cells bind with high efficiency to human cells and elicit NOB antibodies in guinea pigs only when purified from the core-glycosylated intracellular fraction, whereas the complex-glycosylated secreted fraction does not bind and elicits no NOB antibodies. We also show that carbohydrate moieties are not necessary for E2 binding to human cells and that only the monomeric nonaggregated fraction can bind to CD81. Moreover, comparing recombinant intracellular E2 protein to several E2-encoding DNA vaccines in mice, we found that protein immunization is superior to DNA in both the quantity and quality of the antibody response elicited. Together, our data suggest that to elicit antibodies aimed at blocking HCV binding to CD81 on human cells, the antigen of choice is a mammalian cell-expressed, monomeric E2 protein purified from the intracellular fraction.  相似文献   

13.
丙型肝炎病毒E2蛋白对HepG2细胞MAPK/ERK的激活   总被引:7,自引:0,他引:7  
人CD81是丙型肝炎病毒(hepatitis Cvirus,HCV)的细胞表面特异性受体,HCV包膜蛋白-2(E2)可与其结合。细胞个信号调节激酶(extracellular signal-regulated protein kinase,MAPK/ERK1,2)信号途径主要介导细胞增殖及分化。为探讨HCV E2蛋白与人CD81结合对MAPK/ERK活性变化的影响,以HCV E2蛋白刺激HepG2细胞,采用免疫印迹、免疫组化及免疫荧光等方法动态观察细胞内MAPK/ERK的激活情况,并以流式细胞术检测细胞表面CD81的表达。结果表明:HepG2细胞高表达人CD81;HCV E2蛋白可激活细胞内MAPK/ERK;MAPK/ERK的磷酸化反应与HCV E2蛋白浓度、作用时间呈依赖关系;HCV E2-CD81相互作用引发的细胞异常信号转导可能与HCV致病性相关。  相似文献   

14.
The hepatitis C virus (HCV) envelope E2 glycoprotein is a key molecule regulating the interaction of HCV with cell surface proteins. E2 binds the major extracellular loop of human CD81, a tetraspanin expressed on various cell types including hepatocytes and B lymphocytes. Regardless, information on the biological functions originating from this interaction are largely unknown. Since human hepatic stellate cells (HSC) express high levels of CD81 at the cell surface, we investigated the E2/CD81 interaction in human HSC and the possible effects arising from this interaction. Matrix metalloproteinase-2 (MMP-2; gelatinase A), a major enzyme involved in the degradation of normal hepatic extracellular matrix, was up-regulated following the interaction between E2 and CD81. In particular, by employing zymography and Western blot, we observed that E2 binding to CD81 induces a time-dependent increase in the synthesis and activity of MMP-2. This effect was abolished by preincubating HSC with an anti-CD81 neutralizing antibody. Similar effects were detected in NIH3T3 mouse fibroblasts transfected with human CD81 with identical time course features. In addition, E2/CD81 interaction in human HSC induced the up-regulation of MMP-2 by increasing activator protein-2/DNA binding activity via ERK/MAPK phosphorylation. Finally, suppression of CD81 by RNA interference in human HSC abolished the described effects of E2 on these cells, indicating that CD81 is essential for the activation of the signaling pathway leading to the up-regulation of MMP-2. These results suggest that HSC may represent a potential target for HCV. The interaction of HCV envelope with CD81 on the surface of human HSC induces an increased expression of MMP-2. Increased degradation of the normal hepatic extracellular matrix in areas where HCV is concentrated may favor inflammatory infiltration and further parenchymal damage.  相似文献   

15.
Hepatitis C virus (HCV) naturally infects only humans and chimpanzees. The determinants responsible for this narrow species tropism are not well defined. Virus cell entry involves human scavenger receptor class B type I (SR-BI), CD81, claudin-1 and occludin. Among these, at least CD81 and occludin are utilized in a highly species-specific fashion, thus contributing to the narrow host range of HCV. We adapted HCV to mouse CD81 and identified three envelope glycoprotein mutations which together enhance infection of cells with mouse or other rodent receptors approximately 100-fold. These mutations enhanced interaction with human CD81 and increased exposure of the binding site for CD81 on the surface of virus particles. These changes were accompanied by augmented susceptibility of adapted HCV to neutralization by E2-specific antibodies indicative of major conformational changes of virus-resident E1/E2-complexes. Neutralization with CD81, SR-BI- and claudin-1-specific antibodies and knock down of occludin expression by siRNAs indicate that the adapted virus remains dependent on these host factors but apparently utilizes CD81, SR-BI and occludin with increased efficiency. Importantly, adapted E1/E2 complexes mediate HCV cell entry into mouse cells in the absence of human entry factors. These results further our knowledge of HCV receptor interactions and indicate that three glycoprotein mutations are sufficient to overcome the species-specific restriction of HCV cell entry into mouse cells. Moreover, these findings should contribute to the development of an immunocompetent small animal model fully permissive to HCV.  相似文献   

16.
E1 and E2 glycoproteins are structural components of hepatitis C virus (HCV) virion. They are involved in cellular receptors interaction, neutralising antibodies elicitation, and viral morphogenesis. They are considered as major candidates for anti-HCV vaccine. In this report, we first expressed tandem E1E2 as well as C-terminally truncated E1 fragment and C-terminally truncated E2 fragment, respectively, in Escherichia coli cells and the proteins were purified to homogenesis. All the purified proteins can react specifically with patient sera. Both purified chimeric protein E1E2 and protein E2 can interact with a putative cellular receptor CD81, while purified protein E1 cannot interact with CD81. The sera of rabbit immunized with the E1E2 inhibited the binding of E2 protein to the major extracellular loop of human CD81 and reacted with both proteins E1 and E2, respectively. Anti-E1 and E2 antibodies can be generated simultaneously in the rabbit immunized with the E1E2, and the titers of antibodies were 63 or 56% higher than the titers induced by E1 or E2 alone, respectively. The results suggest that E1 and E2 can enhance their immunogenicity each other in chimeric protein E1E2 and the E. coli-derived chimeric protein E1E2 and corresponding antisera can be used as an useful tools in anti-HCV vaccine research.  相似文献   

17.
Effect of cell polarization on hepatitis C virus entry   总被引:5,自引:4,他引:1       下载免费PDF全文
The primary reservoir for hepatitis C virus (HCV) replication in vivo is believed to be hepatocytes within the liver. Three host cell molecules have been reported to be important entry factors for receptors for HCV: the tetraspanin CD81, scavenger receptor BI (SR-BI), and the tight-junction (TJ) protein claudin 1 (CLDN1). The recent discovery of a TJ protein as a critical coreceptor highlighted the importance of studying the effect(s) of TJ formation and cell polarization on HCV entry. The colorectal adenocarcinoma Caco-2 cell line forms polarized monolayers containing functional TJs and was found to express the CD81, SR-BI, and CLDN1 proteins. Viral receptor expression levels increased upon polarization, and CLDN1 relocalized from the apical pole of the lateral cell membrane to the lateral cell-cell junction and basolateral domains. In contrast, expression and localization of the TJ proteins ZO-1 and occludin 1 were unchanged upon polarization. HCV infected polarized and nonpolarized Caco-2 cells to comparable levels, and entry was neutralized by anti-E2 monoclonal antibodies, demonstrating glycoprotein-dependent entry. HCV pseudoparticle infection and recombinant HCV E1E2 glycoprotein interaction with polarized Caco-2 cells occurred predominantly at the apical surface. Disruption of TJs significantly increased HCV entry. These data support a model where TJs provide a physical barrier for viral access to receptors expressed on lateral and basolateral cellular domains.  相似文献   

18.
The tetraspanin CD81 plays an essential role in diverse cellular processes. CD81 also acts as an entry receptor for HCV through an interaction between the large extracellular loop (LEL) of CD81 and HCV glycoprotein E2. The E2-CD81 interaction also results in immunomodulatory effects in vitro. In this study, we examined the relationship between the dimeric crystal structure of the CD81 LEL and intact CD81. Using random mutagenesis, amino acids were identified that abolished dimerization of recombinant LEL in regions that were important for intermonomer contacts (F150S and V146E), salt bridge formation (K124T), and intramonomer disulfide bonding (T166I, C157S, and C190R). Two monomeric LEL mutants retained the ability to bind E2, K124T, and V146E, whereas F150S, T166I, C157S, and C190R did not. Introduction of K124T, V146E, and F150S mutations in full-length CD81 did not affect its oligomerization and the effects on E2 binding were less severe than for isolated LEL. These results suggest that the LEL has a more robust structure in the intact tetraspanin with regions outside the LEL contributing to CD81 dimerization.  相似文献   

19.
Hepatitis C virus (HCV) cell entry involves interaction between the viral envelope glycoprotein E2 and the cell surface receptor CD81. Knowledge of conserved E2 determinants important for successful binding will facilitate development of entry inhibitors designed to block this interaction. Previous studies have assigned the CD81 binding function to a number of discontinuous regions of E2. To better define specific residues involved in receptor binding, a panel of mutants of HCV envelope proteins was generated, where conserved residues within putative CD81 binding regions were sequentially mutated to alanine. Mutant proteins were tested for binding to a panel of monoclonal antibodies and CD81 and for their ability to form noncovalent heterodimers and confer infectivity in the retroviral pseudoparticle (HCVpp) assay. Detection by conformation-sensitive monoclonal antibodies indicated that the mutant proteins were correctly folded. Mutant proteins fell into three groups: those that bound CD81 and conferred HCVpp infectivity, those that abrogated both CD81 binding and HCVpp infectivity, and a final group containing mutants that were able to bind CD81 but were noninfectious in the HCVpp assay. Specific amino acids conserved across all genotypes that were critical for CD81 binding were W420, Y527, W529, G530, and D535. These data significantly increase our understanding of the CD81 receptor-E2 binding process.  相似文献   

20.
Hepatitis C virus (HCV) or HCV-low-density lipoprotein (LDL) complexes interact with the LDL receptor (LDLr) and the HCV envelope glycoprotein E2 interacts with CD81 in vitro. However, E2 interactions with LDLr and HCV interactions with CD81 have not been clearly described. Using sucrose gradient-purified low-density particles (1.03 to 1.07 g/cm(3)), intermediate-density particles (1. 12 to 1.18 g/cm(3)), recombinant E2 protein, or control proteins, we assessed binding to MOLT-4 cells, foreskin fibroblasts, or LDLr-deficient foreskin fibroblasts at 4 degrees C by flow cytometry and confocal microscopy. Viral entry was determined by measuring the coentry of alpha-sarcin, a protein synthesis inhibitor. We found that low-density HCV particles, but not intermediate-density HCV or controls bound to MOLT-4 cells and fibroblasts expressing the LDLr. Binding correlated with the extent of cellular LDLr expression and was inhibited by LDL but not by soluble CD81. In contrast, E2 binding was independent of LDLr expression and was inhibited by human soluble CD81 but not mouse soluble CD81 or LDL. Based on confocal microscopy, we found that low-density HCV particles and LDL colocalized on the cell surface. The addition of low-density HCV but not intermediate-density HCV particles to MOLT-4 cells allowed coentry of alpha-sarcin, indicating viral entry. The amount of viral entry also correlated with LDLr expression and was independent of the CD81 expression. Using a solid-phase immunoassay, recombinant E2 protein did not interact with LDL. Our data indicate that E2 binds CD81; however, virus particles utilize LDLr for binding and entry. The specific mechanism by which HCV particles interact with LDL or the LDLr remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号