首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 610 毫秒
1.
A phosphate-dependent exonuclease activity was identified in purified protein fractions from Bacillus subtilis that were selected for binding to poly(I)-poly(C) agarose. Based on the characteristics of the degradation products and the absence of this activity in a pnpA strain, which contains a transposon insertion in the B. subtilis PNPase gene (Luttinger et al ., 1996 — accompanying paper), this exonuclease activity was shown to be due to polynucleotide phosphorylase (PNPase). Processive 3'-to-5' exonucleolytic degradation of an SP82 phage RNA substrate was stalled at a particular site. Structure probing of the RNA showed that the stall site was downstream of a particular stem-loop structure. A similar stall site was observed for an RNA that comprised the intergenic region between the B. subtilis rpsO and pnpA genes. The ability to initiate degradation of a substrate that had a stem structure at its 3' end differed for the B. subtilis and Escherichia coli PNPase enzymes.  相似文献   

2.
Addition of erythromycin (Em) to a Bacillus subtilis strain carrying the ermC gene results in ribosome stalling in the ermC leader peptide coding sequence. Using Δ ermC , a deletion derivative of ermC that specifies the 254 nucleotide Δ ermC mRNA, we showed previously that ribosome stalling is concomitant with processing of Δ ermC mRNA, generating a 209 nucleotide RNA whose 5' end maps to codon 5 of the Δ ermC coding sequence. Here we probed for peptidyl-tRNA to show that ribosome stalling occurs after incorporation of the amino acid specified by codon 9. Thus, cleavage upstream of codon 5 is not an example of 'A-site cleavage' that has been reported for Escherichia coli . Analysis of Δ ermC mRNA processing in endoribonuclease mutant strains showed that this processing is RNase J1-dependent. Δ ermC mRNA processing was inhibited by the presence of stable secondary structure at the 5' end, demonstrating 5'-end dependence, and was shown to be a result of RNase J1 endonuclease activity, rather than 5'-to-3' exonuclease activity. Examination of processing in derivatives of Δ ermC that had codons inserted upstream of the ribosome stalling site revealed that Em-induced ribosome stalling can occur considerably further from the start codon than would be expected based on previous studies.  相似文献   

3.
4.
5.
The pnpA gene of Bacillus subtilis, which codes for polynucleotide phosphorylase (PNPase), has been cloned and employed in the construction of pnpA deletion mutants. Growth defects of both B. subtilis and Escherichia coli PNPase-deficient strains were complemented with the cloned pnpA gene. RNA decay characteristics of the B. subtilis pnpA mutant were studied, including the in vivo decay of bulk mRNA and the in vitro decay of either poly(A) or total cellular RNA. The results showed that mRNA decay in the pnpA mutant is accomplished despite the absence of the major, Pi-dependent RNA decay activity of PNPase. In vitro experiments suggested that a previously identified, Mn2+ -dependent hydrolytic activity was important for decay in the pnpA mutant. In addition to a cold-sensitive-growth phenotype, the pnpA deletion mutant was found to be sensitive to growth in the presence of tetracycline, and this was due to an increased intracellular accumulation of the drug. The pnpA deletion strain also exhibited multiseptate, filamentous growth. It is hypothesized that defective processing of specific RNAs in the pnpA mutant results in these phenotypes.  相似文献   

6.
The mechanism of ribosome binding to eucaryotic mRNAs is not well understood, but it requires the participation of eucaryotic initiation factors eIF-4A, eIF-4B, and eIF-4F and the hydrolysis of ATP. Evidence has accumulated in support of a model in which these initiation factors function to unwind the 5'-proximal secondary structure in mRNA to facilitate ribosome binding. To obtain direct evidence for initiation factor-mediated RNA unwinding, we developed a simple assay to determine RNA helicase activity, and we show that eIF-4A or eIF-4F, in combination with eIF-4B, exhibits helicase activity. A striking and unprecedented feature of this activity is that it functions in a bidirectional manner. Thus, unwinding can occur either in the 5'-to-3' or 3'-to-5' direction. Unwinding in the 5'-to-3' direction by eIF-4F (the cap-binding protein complex), in conjunction with eIF-4B, was stimulated by the presence of the RNA 5' cap structure, whereas unwinding in the 3'-to-5' direction was completely cap independent. These results are discussed with respect to cap-dependent versus cap-independent mechanisms of ribosome binding to eucaryotic mRNAs.  相似文献   

7.
In Bacillus subtilis, the ermC gene encodes an mRNA that is unusually stable (40-min half-life) in the presence of erythromycin, an inducer of ermC gene expression. A requirement for this induced mRNA stability is a ribosome stalled in the ermC leader region. This property of ermC mRNA was used to study the decay of mRNA in B. subtilis. Using constructs in which the ribosome stall site was internal rather than at the 5' end of the message, we show that ribosome stalling provides stability to sequences downstream but not upstream of the ribosome stall site. Our results indicate that ermC mRNA is degraded by a ribonucleolytic activity that begins at the 5' end and degrades the message in a 5'-to-3' direction.  相似文献   

8.
Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to degrade single-stranded (ss) DNA with a 3' → 5' polarity in the presence of Mn(2+) and low inorganic phosphate (Pi) concentration, or to extend a 3'-OH end in the presence dNDP · Mn(2+). Both PNPase activities were observed in evolutionarily distant bacteria (B. subtilis and Escherichia coli), suggesting conserved functions. The activity of PNPase was directed toward ssDNA degradation or polymerization by manipulating the Pi/dNDPs concentrations or the availability of RecA or RecN. In its dATP-bound form, RecN stimulates PNPase-mediated polymerization. ssDNA phosphorolysis catalyzed by PNPase is stimulated by RecA, but inhibited by SsbA. Our findings suggest that (i) the PNPase degradative and polymerizing activities might play a critical role in the transition from DSB sensing to end resection via HR and (ii) by blunting a 3'-tailed duplex DNA, in the absence of HR, B. subtilis PNPase might also contribute to repair via NHEJ.  相似文献   

9.
A segment of early RNA from Bacillus subtilis bacteriophage SP82 was shown to function as a 5' stabilizer in B. subtilis. Several heterologous RNA sequences were stabilized by the presence of the SP82 sequence at the 5' end, and expression of downstream coding sequences was increased severalfold. The SP82 RNA segment encodes a B. subtilis RNase III cleavage site, but cleavage by B. subtilis RNase III was not required for stabilization. The sequence that specifies 5' stabilizer function was localized to a polypurine sequence that resembles a ribosome binding site. The ability of the SP82 sequence to stabilize downstream RNA was dependent on its position relative to the 5' end of the RNA. These results demonstrate the existence of a new type of 5' stabilizer in B. subtilis and indicate that attack at the 5' end is a principal mechanism for initiation of mRNA decay in B. subtilis.  相似文献   

10.
In Escherichia coli, REP-stabilizers are structural elements in polycistronic messages that protect 5'-proximal cistrons from 3'-->5' exonucleolytic degradation. The stabilization of a protected cistron can be an important determinant in the level of gene expression. Our results suggest that RNase E, an endoribonuclease, initiates the degradation of REP-stabilized mRNA. However, subsequent degradation of mRNA fragments containing a REP-stabilizer poses a special challenge to the mRNA degradation machinery. Two enzymes, the DEAD-box RNA helicase, RhlB and poly(A) polymerase (PAP) are required to facilitate the degradation of REP-stabilizers by polynucleotide phosphorylase (PNPase). This is the first in vivo evidence that these enzymes are required for the degradation of REP-stabilizers. Furthermore, our results show that REP degradation by RhlB and PNPase requires their association with RNase E as components of the RNA degradosome, thus providing the first in vivo evidence that this ribonucleolytic multienzyme complex is involved in the degradation of structured mRNA fragments.  相似文献   

11.
Messenger RNA decay plays a central role in the regulation and surveillance of eukaryotic gene expression. The conserved multidomain exoribonuclease Xrn1 targets cytoplasmic RNA substrates marked by a 5' monophosphate for processive 5'-to-3' degradation by an unknown mechanism. Here, we report the crystal structure of an Xrn1-substrate complex. The single-stranded substrate is held in place by stacking of the 5'-terminal trinucleotide between aromatic side chains while a highly basic pocket specifically recognizes the 5' phosphate. Mutations of residues involved in binding the 5'-terminal nucleotide impair Xrn1 processivity. The substrate recognition mechanism allows Xrn1 to couple processive hydrolysis to duplex melting in RNA substrates with sufficiently long single-stranded 5' overhangs. The Xrn1-substrate complex structure thus rationalizes the exclusive specificity of Xrn1 for 5'-monophosphorylated substrates, ensuring fidelity of mRNA turnover, and posits a model for translocation-coupled unwinding of structured RNA substrates.  相似文献   

12.
13.
14.
One of two general pathways of mRNA decay in the yeast Saccharomyces cerevisiae occurs by deadenylation followed by 3'-to-5' degradation of the mRNA body. Previous results have shown that this degradation requires components of the exosome and the Ski2p, Ski3p, and Ski8p proteins, which were originally identified due to their superkiller phenotype. In this work, we demonstrate that deletion of the SKI7 gene, which encodes a putative GTPase, also causes a defect in 3'-to-5' degradation of mRNA. Deletion of SKI7, like deletion of SKI2, SKI3, or SKI8, does not affect various RNA-processing reactions of the exosome. In addition, we show that a mutation in the SKI4 gene also causes a defect in 3'-to-5' mRNA degradation. We show that the SKI4 gene is identical to the CSL4 gene, which encodes a core component of the exosome. Interestingly, the ski4-1 allele contains a point mutation resulting in a mutation in the putative RNA binding domain of the Csl4p protein. This point mutation strongly affects mRNA degradation without affecting exosome function in rRNA or snRNA processing, 5' externally transcribed spacer (ETS) degradation, or viability. In contrast, the csl4-1 allele of the same gene affects rRNA processing but not 3'-to-5' mRNA degradation. We identify csl4-1 as resulting from a partial-loss-of-function mutation in the promoter of the CSL4 gene. These data indicate that the distinct functions of the exosome can be separated genetically and suggest that the RNA binding domain of Csl4p may have a specific function in mRNA degradation.  相似文献   

15.
16.
17.
18.
PNPase is a major exoribonuclease that plays an important role in the degradation, processing, and polyadenylation of RNA in prokaryotes and organelles. This phosphorolytic processive enzyme uses inorganic phosphate and nucleotide diphosphate for degradation and polymerization activities, respectively. Its structure and activities are similar to the archaeal exosome complex. The human PNPase was recently localized to the intermembrane space (IMS) of the mitochondria, and is, therefore, most likely not directly involved in RNA metabolism, unlike in bacteria and other organelles. In this work, the degradation, polymerization, and RNA-binding properties of the human PNPase were analyzed and compared to its bacterial and organellar counterparts. Phosphorolytic activity was displayed at lower optimum concentrations of inorganic phosphate. Also, the RNA-binding properties to ribohomopolymers varied significantly from those of its bacterial and organellar enzymes. The purified enzyme did not preferentially bind RNA harboring a poly(A) tail at the 3' end, compared to a molecule lacking this tail. Several site-directed mutations at conserved amino acid positions either eliminated or modified degradation/polymerization activity in different manners than observed for the Escherichia coli PNPase and the archaeal and human exosomes. In light of these results, a possible function of the human PNPase in the mitochondrial IMS is discussed.  相似文献   

19.
20.
The hok/sok system of plasmid R1, which mediates plasmid stabilization by the killing of plasmid-free cells, codes for two RNA species, Sok antisense RNA and hok mRNA. Sok RNA, which is unstable, inhibits translation of the stable hok mRNA. The 64 nt Sok RNA folds into a single stem-loop domain with an 11 nt unstructured 5' domain. The initial recognition reaction between Sok RNA and hok mRNA takes place between the 5' domain and the complementary region in hok mRNA. In this communication we examine the metabolism of Sok antisense RNA. We find that RNase E cleaves the RNA 6 nt from its 5' end and that this cleavage initiates Sok RNA decay. The RNase E cleavage occurs in the part of Sok RNA that is responsible for the initial recognition of the target loop in hok mRNA and thus leads to functional inactivation of the antisense. The major RNase E cleavage product (denoted pSok-6) is rapidly degraded by polynucleotide phosphorylase (PNPase). Thus, the RNase E cleavage tags pSok−6 for further rapid degradation by PNPase from its 3' end. We also show that Sok RNA is polyadenylated by poly(A) polymerase I (PAP I), and that the poly(A)-tailing is prerequisite for the rapid 3'-exonucleolytic degradation by PNPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号