首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Morphology is commonly used as a predictor of ecological relationships among species when studying local assemblages of Neotropical birds. Nevertheless, most evidence supporting ecomorphological correspondence in birds comes from studies of communities and not from local assemblages and, moreover, from temperate latitudes. To increase our understanding of ecomorphological correspondence in Neotropical assemblages, we used three multivariate approaches to evaluate correspondence between morphological and foraging behavior data in a tyrant‐flycatcher assemblage (N= 12 species) in the Santa Marta Mountains in Colombia. Principal components analyses revealed similar species ordinations when using morphological measurements (beak size and shape, tarsus length, wing length, and tail length) or behavioral data (behavioral types of searching for prey and prey capture) separately. Discriminant function analyses tested the ability of morphological traits to predict foraging behavior, showing that more than 90% of all measured individuals (N= 267) were correctly classified in previously defined categories of search and attack behavior. Finally, Canonical correlation analyses revealed a significant correlation between morphological data and two independent datasets of search and attack behavior. Our results demonstrate that morphology can accurately predict ecology in an assemblage of Neotropical tyrannids, and similar results have been reported in previous studies of temperate Tyrant‐flycatchers. Our results also show that bill size and shape, wing length, and tarsus length are the best predictors of foraging behavior in this assemblage. Testing for ecomorphological correspondence in other Neotropical taxa would help identify subsets of phenotypic traits that could be used for a practical, but reliable, determination of ecological relationships within different assemblages.  相似文献   

2.
Summary I compare the relationship between bill size (depth) and body size among different taxa of seed-eating finches to test the hypothesis (Schluter, 1988a) that in habitats where seed-eating finches are vulnerable to predators, finches have larger bodies relative to their bill size. In support of this hypothesis, ground-foraging finches on continents (Emberizidae, Passeridae, Fringillidae), where predators are more common, have larger bodies relative to their bill sizes than do ground-foraging finches on islands (Emberizidae, Fringillidae). Ground-feeding finches on continents may also be more vulnerable to predators than tree- and shrub-foraging finches. As predicted, in North America, ground-feeding finches (Emberizinae) have larger bodies relative to their bill size than do tree- and shrub-foraging finches (Carduelinae). As a consequence of increased body size relative to bill size, both the range of possible bill sizes and potential seed sizes that can be eaten are reduced. Moreover, increased metabolic demands caused by larger body size may lessen the ability to specialize on a few seed types. These two factors reduce the potential for seed size partitioning. Consequently, vulnerability to predators may limit, and is inversely correlated with, seed size partitioning in seed-eating finch communities. The extent to which predation has influenced other bird communities may be considerable, and the patterns found by Schluter (1988a) and in this study indicate that future ecomorphological studies, especially on species that spend much of the day foraging, might profit by considering predator vulnerability as well as foraging behaviour.  相似文献   

3.
The hindlimb (myology and osteology) of swallows (Hirundinidae) is studied and compared with that of seven other passerine families to identify ecomorphological patterns. Muscular and osteological differences are found among swallow species and associations between morphology and foraging technique are examined. We explain morphological differences found in hirundinids as adaptations favouring flexion and adduction of the legs in these aerial foragers, which devote very little time to cursorial locomotion. This adaptive hypothesis is tested using a phylogenetic approach on the basis of an available molecular phylogenetic hypothesis. A clear ecomorphological pattern emerges relating foraging behaviour and pelvic morphology in hirundinids: aerial feeding technique is correlated with short distal leg segments, a large pelvis, a medial insertion of M. iliotibialis cranialis, an absence of pars accessoria of M. flexor cruris lateralis and a fused M. pubo-ischiofemoralis.  相似文献   

4.
Perspectives on the ecomorphology of bony fishes   总被引:3,自引:0,他引:3  
Synopsis The field of ecomorphology has a long history with early roots in Europe. In this half of the century the application of ecomorphology to the biology of fishes has developed in the former Soviet Union, Poland and Czechoslovakia, The Netherlands, and in North America. While the specific approaches vary among countries, many North American studies begin by comparing morphological variation with variation in ecological characteristics at the intra or interspecific levels. These initial correlative studies form the ground work for hypotheses that explore the mechanistic underpinnings of the observed ecomorphological associations. Supporting these mechanistic hypotheses are insights from functional studies which demonstrate the limits to potential resource use resulting from a particular morphology; however, the actual resource use is likely to be more limited due to additional constraints provided by internal (e.g., behavior, physiology) and external (e.g., resource abundance, predator distribution) factors. The results from performance studies in the laboratory or field can be used to test specific ecomorphological hypotheses developed from the initial correlational and functional studies. Such studies may, but rarely do, incorporate an ontogenetic analysis of the ecomorphological association to determine their effect on performance. Finally, input from phylogenetic analyses allow an investigator to examine the evolution of specific features and to assess the rates and directionality of character evolution. The structural and ecological diversity of fishes provides a fertile ground to investigate these interactions. The contributions in this volume highlight some of the specific directions for ecomorphological research covering a variety of biological processes in fishes. These include foraging, locomotion, reproduction, respiration, and sensory systems. Running through these papers are new insights into universal ecomorphological issues, i.e., the relationships between form and ecological role and the factors that modify these relationships.  相似文献   

5.
To better understand ecological traits of organisms, one can study them from two, not necessarily mutually exclusive perspectives: how the traits evolved, and their current adaptive utility. In birds, foraging behavior and associated morphological traits generally are explained by a combination of adaptive and phylogenetic predictors. The avian skeleton and more specifically, the skeletal flight apparatus is under well‐known functional and phylogenetic constraints. This is an interesting area to partition the relative contributions of adaptive correlated evolution and phylogenetic constraint to species clustering in morphological space. A prediction of convergent evolution is that nonphylogenetic morphological clustering is a characteristic of ecological similarity. We tested this using representatives of North American birds from two clades, one with a mixture of foraging modes (Turdid thrushes, solitaires, and bluebirds) and one with more canalized foraging behaviors (Tyrannid flycatchers). Nine characters on the skeletal flight apparatus from 19 species were used to characterize the morphological space and test for ecomorphological clustering. When body size and phylogeny are considered, the three bluebird species and Townsend's solitaire cluster with the ecologically similar flycatchers rather than with their phylogenetic close relatives. Furthermore, sit‐and‐wait foragers tend to exhibit relatively long distal elements and a long keel while active ground foragers have deeper keels and a longer humerus. Distal elements, expected to be relatively shorter and more bowed in the flycatchers and bluebirds, were actually longer and narrower. A reduction of distal element mass may be more important for facilitating maneuverability than surface area for insertion of wing‐rotational musculature. J. Morphol. 274:909–917, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant–pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats.  相似文献   

7.
We examined the relationships between morphology and foraging behaviour in a group of insectivorous birds wintering in temperate mixed forests in northern Iberia. Using principal components analysis we reduced 11 biometric variables to three major morphological components and 20 foraging categories to four major ecological factors. The relative length of the tarsometatarsus and bill morphology were the most important morphological variables predicting foraging ecology. Birds exploiting distal parts of trees and foliage were generally smaller and had relatively longer tarsometatarsi than those foraging on trunks. Foraging on the ground and branches of medium diameter was associated with bill thickness. Ecomorphological patterns were discernible at the level of substrate use and foraging methods, but bear no relation to selection of tree species or foraging height. Morphology correctly predicted niche breadth and interspecific overlap. In Parus spp. interspecific differences in bill shape could explain 63% of the interspecific segregation according to substrate use (R2= 0.63, p <0.01).  相似文献   

8.
Abstract Passerine birds living on islands are usually larger than their mainland counterparts, in terms of both body size and bill size. One explanation for this island rule is that shifts in morphology are an adaptation to facilitate ecological niche expansion. In insular passerines, for instance, increased bill size may facilitate generalist foraging because it allows access to a broader range of feeding niches. Here we use morphologically and ecologically divergent races of white-eyes (Zosteropidae) to test three predictions of this explanation: (1) island populations show a wider feeding niche than mainland populations; (2) island-dwelling populations are made up of individual generalists; and (3) within insular populations there is a positive association between size and degree of foraging generalism. Our results provide only partial support for the traditional explanation. In agreement with the core prediction, island populations of white-eye do consistently display a wider feeding niche than comparative mainland populations. However, observations of individually marked birds reveal that island-dwelling individuals are actually more specialized than expected by chance. Additionally, neither large body size nor large bill size are associated with generalist foraging behavior per se. These latter results remained consistent whether we base our tests on natural foraging behavior or on observations at an experimental tree, and whether we use data from single or multiple cohorts. Taken together, our results suggest that generalist foraging and niche expansion are not the full explanation for morphological shifts in island-dwelling white-eyes. Hence, we review briefly five alternative explanations for morphological divergence in insular populations: environmental determination of morphology, reduced predation pressure, physiological optimization, limited dispersal, and intraspecific dominance.  相似文献   

9.
A railroad causeway across Great Salt Lake, Utah (GSL), has restricted water flow since its construction in 1959, resulting in a more saline North Arm (NA; 24%–31% salinity) and a less saline South Arm (SA; 11%–14% salinity). Here, we characterized microbial carbonates collected from the SA and the NA to evaluate the effect of increased salinity on community composition and abundance and to determine whether the communities present in the NA are still actively precipitating carbonate or if they are remnant features from prior to causeway construction. SSU rRNA gene abundances associated with the NA microbialite were three orders of magnitude lower than those associated with the SA microbialite, indicating that the latter community is more productive. SSU rRNA gene sequencing and functional gene microarray analyses indicated that SA and NA microbialite communities are distinct. In particular, abundant sequences affiliated with photoautotrophic taxa including cyanobacteria and diatoms that may drive carbonate precipitation and thus still actively form microbialites were identified in the SA microbialite; sequences affiliated with photoautotrophic taxa were in low abundance in the NA microbialite. SA and NA microbialites comprise smooth prismatic aragonite crystals. However, the SA microbialite also contained micritic aragonite, which can be formed as a result of biological activity. Collectively, these observations suggest that NA microbialites are likely to be remnant features from prior to causeway construction and indicate a strong decrease in the ability of NA microbialite communities to actively precipitate carbonate minerals. Moreover, the results suggest a role for cyanobacteria and diatoms in carbonate precipitation and microbialite formation in the SA of GSL.  相似文献   

10.
We sequenced mitochondrial DNA from four protein-coding genes for 26 taxa to test W. E. Lanyon's hypothesis of intergeneric relationships and character evolution in the Empidonax group of tyrant flycatchers. Three genera in this group (Empidonax, Contopus, and Sayornis) successfully occupy north temperate habitats for breeding, while the remaining genera (Mitrephanes, Cnemotriccus, Aphanotriccus, Lathrotriccus, and Xenotriccus) are restricted to neotropical latitudes. Lanyon hypothesized two major clades in the group based on differences in syringeal morphology and proposed relationships among genera using a combination of morphologic, behavioral, and allozymic characters. The mtDNA data strongly support Lanyon's division of genera into two clades. In addition, the molecular and nonmolecular data sets agree in uniting Aphanotriccus and Lathrotriccus as sister taxa, with Cnemotriccus as basal to these genera. Species of Aphanotriccus, Lathrotriccus, and Cnemotriccus form a clade that exploits a distinctive nesting niche relative to other members of the Empidonax group. Within the second major clade, mtDNA sequences support a reconstruction based on allozymes that places Contopus and Empidonax as sister taxa. This hypothesis contradicts that of Lanyon, who allied Contopus with Mitrephanes on the basis of similarity in foraging mode. Genera in the Empidonax group are members of a larger assemblage that radiated in South America. Occupancy of temperate habitats by certain genera in this group is coincident with their evolution of migratory behavior and with independent diversification in foraging modes that reduces potential competition in sympatry.  相似文献   

11.
Links between morphology and foraging strategies have been well established for many vertebrate groups. Foraging strategies of Melanerpes woodpeckers are especially variable, with at least six species being proficient flycatchers; the remainder of the better known species do not flycatch. Our objective was to examine variation in foraging tactics as it relates to skull morphology and other life history traits among these species to better understand the biology of these diverse woodpeckers. We measured eight skull characters from 241 individuals representing 19 species, but focused on eight species for which we had the most data. We used the log-geometric mean and a principal components analysis (PCA) to calculate size-scaled shape variables. Cluster analysis based on PCA scores clearly separated birds by foraging behavior. Species with similar foraging behaviors (i.e., flycatchers vs non-flycatchers) also share a number of other life history characteristics including similar plumage, diets, and migratory behavior. Diversity within Melanerpes may imply a high degree of plasticity or that species have been incorrectly placed in a polyphyletic group. Woodpeckers currently in the genus Melanerpes share few uniting characters and historically have been placed in as many as eight different genera. Additional life history, morphological, and genetic studies of the group, especially of Caribbean and Neotropical species, is warranted.  相似文献   

12.
An important dimension of adaptive radiation is the degree to which diversification rates fluctuate or remain constant through time. Focusing on plethodontid salamanders of the genus Desmognathus, we present a novel synthetic analysis of phylogeographic history, rates of ecomorphological evolution and species accumulation, and community assembly in an adaptive radiation. Dusky salamanders are highly variable in life history, body size, and ecology, with many endemic lineages in the southern Appalachian Highlands of eastern North America. Our results show that life-history evolution had important consequences for the buildup of plethodontid-salamander species richness and phenotypic disparity in eastern North America, a global hot spot of salamander biodiversity. The origin of Desmognathus species with aquatic larvae was followed by a high rate of lineage accumulation, which then gradually decreased toward the present time. The peak period of lineage accumulation in the group coincides with evolutionary partitioning of lineages with aquatic larvae into seepage, stream-edge, and stream microhabitats. Phylogenetic simulations demonstrate a strong correlation between morphology and microhabitat ecology independent of phylogenetic effects and suggest that ecomorphological changes are concentrated early in the radiation of Desmognathus. Deep phylogeographic fragmentation within many codistributed ecomorph clades suggests long-term persistence of ecomorphological features and stability of endemic lineages and communities through multiple climatic cycles. Phylogenetic analyses of community structure show that ecomorphological divergence promotes the coexistence of lineages and that repeated, independent evolution of microhabitat-associated ecomorphs has a limited role in the evolutionary assembly of Desmognathus communities. Comparing and contrasting our results to other adaptive radiations having different biogeographic histories, our results suggest that rates of diversification during adaptive radiation are intimately linked to the degree to which community structure persists over evolutionary time.  相似文献   

13.
The selective pressures acting on phenotypes are complex and can vary both spatially and temporally. To elucidate relationships among environmental conditions and selection on a complex morphological trait, we explored spatial and temporal variation in avian bill structure in a common generalist songbird, the Dark-eyed Junco (Junco hyemalis). We measured bill length, width, and depth, and calculated bill surface area for >800 museum specimens collected in California from 1905 to 1980. We then determined which environmental variables (precipitation, temperature, habitat type) acting over which temporal scales (seasonal, annual, hemi-decadal, decadal) explained variation in these measures of bill morphology. Although we had predicted that relationships between environmental parameters and selection on the bill structure would reflect either foraging ecology or thermoregulatory needs, the patterns that we found were more complex and varied with season and among the different bill traits examined. Temperature was consistently a more important predictor of bill morphology than precipitation, although overall support for temperature was still weak. While bill surface area was related to habitat type, linear measures of bill morphology were related to temperature maxima, minima, and variability. Bill morphology was related to temperature maxima in summer; in contrast, both temperature maxima and minima were supported in winter models. Of the climate variables identified as important in our analyses, support was strongest for the measure of decadal temperature variability. The strong relationship between vegetative community and bill surface area revealed by our analyses as well as the unexpected role of decadal temperature variability indicate that consideration of the large-scale context—ecology and climate—in which complex phenotypic traits occur may reveal important patterns of selection that are not evident from studies of more isolated components of natural systems.  相似文献   

14.
1. Fish and invertebrate assemblage data collected from 670 stream sites in Minnesota (U.S.A.) were used to calculate concordance across three nested spatial scales (statewide, ecoregion and catchment). Predictive taxa richness models, calibrated using the same data, were used to evaluate whether concordant communities exhibited similar trends in human‐induced taxa loss across all three scales. Finally, we evaluated the strength of the relationship between selected environmental variables and the composition of both assemblages at all three spatial scales. 2. Significant concordance between fish and invertebrate communities occurred at the statewide scale as well as in six of seven ecoregions and 17 of the 21 major catchments. However, concordance was not consistently indicative of significant relationships between rates of fish and invertebrate taxa loss at those same scales. 3. Fish and invertebrate communities were largely associated with different environmental variables, although the composition of both communities was strongly correlated with stream size across all three scales. 4. Predictive taxa‐loss models for fish assemblages were less sensitive and precise than models for invertebrate assemblages, likely because of the relatively low number of common fish taxa in our data set. Both models, however, distinguished reference from non‐reference sites. 5. The importance of concordance, geographic context and scale are discussed in relation to the design and interpretation of stream integrity indicators. In particular, our findings suggest that community concordance should not be viewed as a substitute for an evaluation of how assemblages respond to environmental stressors.  相似文献   

15.
Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the ‘openness’ of their habitats.  相似文献   

16.
Synopsis Research in all fields of biology increasingly uses phylogenetic systematics to interpret biological data in an evolutionary context. It is becoming widely accepted that comparative studies of the correlation of biological features, such as ecomorphological studies, must frame their analyses within the context of a phylogenetic hierarchy rather than treating each taxonomic unit as an independent replicate. Recent methods for the interpretation of ecological and functional data in the framework of a phylogeny can reveal the degree to which ecomorphological characters are correlated with one another, and are congruent with hierarchical cladistic groups. An example of the ecomorphology of labrid fishes is used here to illustrate the application of several of these methods. The structural design and mechanics of the jaws of labrids are tested for ecomorphological associations with the natural diets of these fishes. Methods for analysis of the correlated evolution of both discrete and continuous quantitative characters within a phylogeny are practiced on a single ecomorphological data set. Techniques used include character coding, character mapping, phylogenetic autocorrelation, independent contrasts, and squared change parsimony. These approaches to diverse biological data allow the study of ecomorphology to account for patterns of phylogenetic ancestry. Biomechanics or functional morphology also plays a vital role in the determination of ecomorphological relationships by clarifying the mechanisms by which morphologies can perform behaviors important to the organism's ecology. The synthesis of systematics with biomechanics is an example of interdisciplinary study in which information exchange can elucidate patterns of evolution in ecomorphology.  相似文献   

17.
18.
Summary The effects of trophic morphology and behavior of three Hawaiian honeycreepers (Fringillidae: Drepanidinae) upon their foraging rates on the flowers of Vaccinium calycinum are examined. The Maui Creeper (Paroreomyza montana), the Amakihi (Hemianathus virens), and the I'iwi (Vestiaria coccinea) show shifts from a short straight bill to a long decurved bill, from a tongue adapted for insect feeding to one specialized for nectar, and diets ranging from primarily probing for insects to primarily nectarivorous. This diversity is examined feeding on the simple straight tubular corollas of the Vaccinium. Significant differences (P<0.001, t-tests) exist among the birds with respect to foraging rates on these flowers. The I'iwi, with its greatly decurved (64°) bill feeds the quickest (2.09 s/flower) while the Maui Creeper with its rather straight (18°) bill feeds the slowest (3.87 s/flower). These differences are seen to be the result of differing abilities of tongues to extract nectar as well as differing behavioral tactics of floral exploration and nectar extraction. This suggests that predictions of foraging efficiency based solely on bill morphology are not necessarily valid, and that other factors (tongue morphology, foraging maneuvers, and typical food spectrum) must also be considered.  相似文献   

19.
Variations in visual field topography among birds have been interpreted as adaptations to the specific perceptual challenges posed by the species’ foraging ecology. To test this hypothesis we determined visual field topography in four bird species which have different foraging ecologies but are from the same family: Puna Ibis Plegadis ridgwayi (probes for prey in the soft substrates of marsh habitats), Northern Bald Ibis Geronticus eremita (surface pecks for prey in dry terrestrial habitats), African Spoonbill Platalea alba and Eurasian Spoonbill Platalea leucorodia (bill‐sweeps for prey in shallow turbid waters). All four species employ tactile cues provided by bill‐tip organs for prey detection. We predicted that the visual fields of these species would show general features similar to those found in other birds whose foraging is guided by tactile cues from the bill (i.e. bill falling outside the frontal binocular field and comprehensive visual coverage of the celestial hemisphere). However, the visual fields of all four species showed general features characteristic of birds that take food directly in the bill under visual guidance (i.e. a narrow and vertically long binocular field in which the projection of the bill tip is approximately central and with a blind area above and behind the head). Visual fields of the two spoonbills were very similar but differed from those of the ibises, which also differed between themselves. In the spoonbills, there was a blind area below the bill produced by the enlarged spatulate bill tip. We discuss how these differences in visual fields are related to the perceptual challenges of these birds’ different foraging ecologies, including the detection, identification and ingestion of prey. In particular we suggest that all species need to see binocularly around the bill and between the opened mandibles for the identification of caught prey items and its transport to the back of the mouth. Our findings support the hypothesis that sensory challenges associated with differences in foraging ecology, rather than shared ancestry or the control of locomotion, are the main determinants of variation in visual field topography in birds.  相似文献   

20.
Moreno CE  Arita HT  Solis L 《Oecologia》2006,149(1):133-140
Empirical studies on bat assemblages have shown that richness is not appreciably influenced by local processes such as ecological interactions. However, most of these studies have been done in large areas that include high heterogeneity, and they analyse all bat species within such areas, and thus they may be not reflecting local but supra-community conditions. We followed an ecomorphological approach to assess how bat assemblages of species from the families Phyllostomidae and Mormoopidae, and ensembles of frugivorous bats, are assembled in local habitats within a single landscape. We measured the volume of the space defined by wing morphology and quantified the average distance between species within such a volume. Then, we related these measures to local richness. Such relationships were contrasted against relationships with random assemblages to test for statistical differences. At the ensemble level of organization, we found that the frugivorous bat morphological assembly mechanism is different from random patterns, and it corresponds to the volume-increasing model. On the other hand, bat assembly mechanisms may be ubiquitous at the assemblage level, because groups of species coexisting in a local habitat and delimited only by phylogeny include more than one ecological group with no potential to interact. Assembling processes are crucial to an understanding of species diversity in local communities, and ecomorphological analyses are very promising tools that may help in their study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号