首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The successful resolution of inflammation is dependent upon the coordinated transition from the initial recruitment of neutrophils to a more sustained population of mononuclear cells. IL-6, which signals via the common receptor subunit gp130, represents a crucial checkpoint regulator of neutrophil trafficking during the inflammatory response by orchestrating chemokine production and leukocyte apoptosis. However, the relative contribution of specific IL-6-dependent signaling pathways to these processes remains unresolved. To define the receptor-mediated signaling events responsible for IL-6-driven neutrophil trafficking, we used a series of gp130 knockin mutant mice displaying altered IL-6-signaling capacities in an experimental model of acute peritoneal inflammation. Hyperactivation of STAT1 and STAT3 in gp130(Y757F/Y757F) mice led to a more rapid clearance of neutrophils, and this coincided with a pronounced down-modulation in production of the neutrophil-attracting chemokine CXCL1/KC. By contrast, the proportion of apoptotic neutrophils in the inflammatory infiltrate remained unaffected. In gp130(Y757F/Y757F) mice lacking IL-6, neutrophil trafficking and CXCL1/KC levels were normal, and this corresponded with a reduction in the level of STAT1/3 activity. Furthermore, monoallelic ablation of Stat3 in gp130(Y757F/Y757F) mice specifically reduced STAT3 activity and corrected both the rapid clearance of neutrophils and impaired CXCL1/KC production. Conversely, genetic deletion of Stat1 in gp130(Y757F/Y757F) mice failed to rescue the altered responses observed in gp130(Y757F/Y757F) mice. Collectively, these data genetically define that IL-6-driven signaling via STAT3, but not STAT1, limits the inflammatory recruitment of neutrophils, and therefore represents a critical event for the termination of the innate immune response.  相似文献   

2.
Suppressor of cytokine signalling 3 (SOCS3) negatively regulates STAT3 activation in response to several cytokines such as those in the gp130-containing IL-6 receptor family. Thus, SOCS3 may play a major role in immune responses to pathogens. In the present study, the role of SOCS3 in M. tuberculosis infection was examined. All Socs3fl/fl LysM cre, Socs3fl/fl lck cre (with SOCS3-deficient myeloid and lymphoid cells, respectively) and gp130F/F mice, with a mutation in gp130 that impedes binding to SOCS3, showed increased susceptibility to infection with M. tuberculosis. SOCS3 binding to gp130 in myeloid cells conveyed resistance to M. tuberculosis infection via the regulation of IL-6/STAT3 signalling. SOCS3 was redundant for mycobacterial control by macrophages in vitro. Instead, SOCS3 expression in infected macrophages and DCs prevented the IL-6-mediated inhibition of TNF and IL-12 secretion and contributed to a timely CD4+ cell-dependent IFN-γ expression in vivo. In T cells, SOCS3 expression was essential for a gp130-independent control of infection with M. tuberculosis, but was neither required for the control of infection with attenuated M. bovis BCG nor for M. tuberculosis in BCG-vaccinated mice. Socs3fl/fl lck cre mice showed an increased frequency of γδ+ T cells in different organs and an enhanced secretion of IL-17 by γδ+ T cells in response to infection. Socs3fl/fl lck cre γδ+ T cells impaired the control of infection with M. tuberculosis. Thus, SOCS3 expression in either lymphoid or myeloid cells is essential for resistance against M. tuberculosis via discrete mechanisms.  相似文献   

3.
4.
5.
6.
To define the molecular mechanism(s) by which interleukin (IL)-4 reversibly inhibits formation of osteoclasts (OCs) from bone marrow macrophages (BMMs), we examined the capacity of this T cell-derived cytokine to impact signals known to modulate osteoclastogenesis, which include those initiated by macrophage colony-stimulating factor (M-CSF), receptor for activation of NF-kappa B ligand (RANKL), tumor necrosis factor (TNF), and IL-1. We find that although pretreatment of BMMs with IL-4 does not alter M-CSF signaling, it reversibly blocks RANKL-dependent activation of the NF-kappa B, JNK, p38, and ERK signals. IL-4 also selectively inhibits TNF signaling, while enhancing that of IL-1. Contrary to previous reports, we find that MEK inhibitors dose-dependently inhibit OC differentiation. To identify more proximal signals mediating inhibition of OC formation by IL-4, we used mice lacking STAT6 or SHIP1, two adapter proteins that bind the IL-4 receptor. IL-4 fails to inhibit RANKL/M-CSF-induced osteoclastogenesis by BMMs derived from STAT6-, but not SHIP1-, knockout mice. Consistent with this observation, the inhibitory effects of IL-4 on RANKL-induced NF-kappa B and mitogen-activated protein kinase activation are STAT6-dependent. We conclude that IL-4 reversibly arrests osteoclastogenesis in a STAT6-dependent manner by 1) preventing I kappa B phosphorylation and thus NF-kappa B activation, and 2) blockade of the JNK, p38, and ERK mitogen-activated protein kinase pathways.  相似文献   

7.
Ciliary neurotrophic factor (CNTF) is a neurotrophic factor with therapeutic potential for neurodegenerative diseases. Moreover, therapeutic application of CNTF reduced body weight in mice and humans. CNTF binds to high or low affinity receptor complexes consisting of CNTFR·gp130·LIFR or IL-6R·gp130·LIFR, respectively. Clinical studies of the CNTF derivative Axokine revealed intolerance at higher concentrations, which may rely on the low-affinity binding of CNTF to the IL-6R. Here, we aimed to generate a CNTFR-selective CNTF variant (CV). CV-1 contained the single amino acid exchange R28E. Arg28 is in close proximity to the CNTFR binding site. Using molecular modeling, we hypothesized that Arg28 might contribute to IL-6R/CNTFR plasticity of CNTF. CV-2 to CV-5 were generated by transferring parts of the CNTFR-binding site from cardiotrophin-like cytokine to CNTF. Cardiotrophin-like cytokine selectively signals via the CNTFR·gp130·LIFR complex, albeit with a much lower affinity compared with CNTF. As shown by immunoprecipitation, all CNTF variants retained the ability to bind to CNTFR. CV-1, CV-2, and CV-5, however, lost the ability to bind to IL-6R. Although all variants induced cytokine-dependent cellular proliferation and STAT3 phosphorylation via CNTFR·gp130·LIFR, only CV-3 induced STAT3 phosphorylation via IL-6R·gp130·LIFR. Quantification of CNTF-dependent proliferation of CNTFR·gp130·LIFR expressing cells indicated that only CV-1 was as biologically active as CNTF. Thus, the CNTFR-selective CV-1 will allow discriminating between CNTFR- and IL-6R-mediated effects in vivo.  相似文献   

8.
9.
We have previously shown that interleukin-6 (IL-6) has neuroprotective effect against N-methyl-d-aspartate (NMDA)-induced excitotoxicity. The current study aimed to reveal signal transduction pathways involved in the IL-6 neuroprotection. Cerebellar granule neurons (CGNs) from postnatal 8-day infant rats were exposed to IL-6 (120 ng/ml) for 8 days and stimulated with NMDA (100 μM) for 15 or 30 min. Dynamic intracellular Ca2+ fluorescence intensity, cytosolic Ca2+-dependent phospholipase A2 (cPLA2) expression, and apoptosis and necrosis in cultured CGNs were measured by laser scanning confocal microscope, real-time PCR and Western blot, and annexin V-FITC/propidium iodide staining, respectively. NMDA stimulation of neurons evoked an intracellular Ca2+ overload, an upregulated expression of cPLA2, and an increase in cell death. Chronic IL-6 exposure prevented the NMDA-evoked neuronal Ca2+ overload, cPLA2 expression upregulation, and apoptosis and necrosis. Anti-gp130 monoclonal antibody (mAb), a blocker of gp130 that is a 130-kDa signal-transducing β-subunit of IL-6 receptor complex, blocked these effects of IL-6 preventing NMDA neurotoxicity. AG490, PD98059, or LY294002, inhibitors specific for the intracellular signals, JAK, MAPK, and PI3K, respectively, partially blocked these IL-6 neuroprotective effects. Phosphorylation levels of STAT3, ERK1/2, and AKT, the downstream proteins for these enzymes of JAK, MAPK, and PI3K, respectively, were elevated by IL-6 pretreatment. The enhanced activation of STAT3, ERK1/2, and AKT by IL-6 was abolished by AG490, PD98059, and LY294002, respectively. Anti-gp130 mAb attenuated the activation of all the three detected signaling molecules. The present findings suggest that IL-6 neuroprotection is jointly mediated by the cellular signal transduction pathways, gp130-JAK-STAT3, gp130-MAPK-ERK, and gp130-PI3K-AKT.  相似文献   

10.
11.
IL-6 and IL-27 are closely related cytokines that play critical but distinct roles during infection with Toxoplasma gondii. Thus, IL-6 is required for the development of protective immunity to this pathogen, whereas IL-27 is required to limit infection-induced pathology. Paradoxically, these factors both signal through gp130, but little is known about how the signals downstream of gp130 are integrated to coordinate the immune response to infection. To better understand these events, gp130 Y757F mice that have a mutation in gp130 at the binding site for suppressor of cytokine signaling 3, a critical negative regulator of gp130 signaling, were infected with T. gondii. These mutant mice were acutely susceptible to this challenge, characterized by an early defect in the production of IL-12 and IFN-γ and increased parasite burdens. Consistent with the reduced IL-12 levels, IL-6, but not other gp130 cytokines, was a potent antagonist of IL-12 production by gp130 Y757F macrophages and dendritic cells in vitro. Moreover, in gp130 Y757F mice, blocking IL-6 in vivo, or administration of rIL-12, during infection restored IFN-γ production and protective immunity. Collectively, these studies highlight that a failure to abbreviate IL-6-mediated gp130 signaling results in a profound anti-inflammatory signal that blocks the generation of protective immunity to T. gondii.  相似文献   

12.
13.
Signals propagated via the gp130 subunit of the interleukin-6 (IL-6)-type cytokine receptors mediate, among various cellular responses, proliferation of hematopoietic cells and induction of acute-phase plasma protein (APP) genes in hepatic cells. Hematopoietic growth control by gp130 is critically dependent on activation of both STAT3 and protein tyrosine phosphatase 2 (SHP-2). To investigate whether induction of APP genes has a similar requirement for SHP-2, we constructed two chimeric receptors, G-gp130 and G-gp130(Y2F), consisting of the transmembrane and cytoplasmic domains of gp130 harboring either a wild-type or a mutated SHP-2 binding site, respectively, fused to the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor. Rat hepatoma H-35 cells stably expressing the chimeric receptors were generated by retroviral transduction. Both chimeric receptors transmitted a G-CSF-induced signal characteristic of that triggered by IL-6 through the endogenous gp130 receptor; i.e., both activated the appropriate JAK, induced DNA binding activity by STAT1 and STAT3, and up-regulated expression of the target APP genes, those for α-fibrinogen and haptoglobin. Notwithstanding these similarities in the patterns of signaling responses elicited, mutation of the SHP-2 interaction site in G-gp130(Y2F) abrogated ligand-activated receptor recruitment of SHP-2 as expected. Moreover, the tyrosine phosphorylation state of the chimeric receptor, the associated JAK activity, and the induced DNA binding activity of STAT1 and STAT3 were maintained at elevated levels and for an extended period of time in G-gp130(Y2F)-expressing cells following G-CSF treatment compared to that in cells displaying the G-gp130 receptor. H-35 cells ectopically expressing G-gp130(Y2F) were also found to display an enhanced sensitivity to G-CSF and a higher level of induction of APP genes. Overexpression of the enzymatically inactive SHP-2 enhanced the signaling by the wild-type but not by the Y2F mutant G-gp130 receptor. These results indicate that gp130 signaling for APP gene induction in hepatic cells differs qualitatively from that controlling the proliferative response in hematopoietic cells in not being strictly dependent on SHP-2. The data further suggest that SHP-2 functions normally to attenuate gp130-mediated signaling in hepatic (and, perhaps, other) cells by moderating JAK action.  相似文献   

14.
Accumulation of the microtubule-associated protein tau is associated with Alzheimer''s disease (AD). In AD brain, tau is abnormally phosphorylated at many sites, and phosphorylation at Ser-262 and Ser-356 plays critical roles in tau accumulation and toxicity. Microtubule affinity–regulating kinase 4 (MARK4) phosphorylates tau at those sites, and a double de novo mutation in the linker region of MARK4, ΔG316E317D, is associated with an elevated risk of AD. However, it remains unclear how this mutation affects phosphorylation, aggregation, and accumulation of tau and tau-induced neurodegeneration. Here, we report that MARK4ΔG316E317D increases the abundance of highly phosphorylated, insoluble tau species and exacerbates neurodegeneration via Ser-262/356–dependent and –independent mechanisms. Using transgenic Drosophila expressing human MARK4 (MARK4wt) or a mutant version of MARK4 (MARK4ΔG316E317D), we found that coexpression of MARK4wt and MARK4ΔG316E317D increased total tau levels and enhanced tau-induced neurodegeneration and that MARK4ΔG316E317D had more potent effects than MARK4wt. Interestingly, the in vitro kinase activities of MARK4wt and MARK4ΔG316E317D were similar. When tau phosphorylation at Ser-262 and Ser-356 was blocked by alanine substitutions, MARK4wt did not promote tau accumulation or exacerbate neurodegeneration, whereas coexpression of MARK4ΔG316E317D did. Both MARK4wt and MARK4ΔG316E317D increased the levels of oligomeric forms of tau; however, only MARK4ΔG316E317D further increased the detergent insolubility of tau in vivo. Together, these findings suggest that MARK4ΔG316E317D increases tau levels and exacerbates tau toxicity via a novel gain-of-function mechanism and that modification in this region of MARK4 may affect disease pathogenesis.  相似文献   

15.
Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU−/− mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.  相似文献   

16.
In this study we investigated the role of Bruton''s tyrosine kinase (Btk) in the immune response to the Gram-positive intracellular bacterium Listeria monocytogenes (Lm). In response to Lm infection, Btk was activated in bone marrow-derived macrophages (BMMs) and Btk −/− BMMs showed enhanced TNF-α, IL-6 and IL-12p40 secretion, while type I interferons were produced at levels similar to wild-type (wt) BMMs. Although Btk-deficient BMMs displayed reduced phagocytosis of E. coli fragments, there was no difference between wt and Btk −/− BMMs in the uptake of Lm upon infection. Moreover, there was no difference in the response to heat-killed Lm between wt and Btk −/− BMMs, suggesting a role for Btk in signaling pathways that are induced by intracellular Lm. Finally, Btk −/− mice displayed enhanced resistance and an increased mean survival time upon Lm infection in comparison to wt mice. This correlated with elevated IFN-γ and IL-12p70 serum levels in Btk −/− mice at day 1 after infection. Taken together, our data suggest an important regulatory role for Btk in macrophages during Lm infection.  相似文献   

17.
The effect of differential signalling by IL-6 and leukaemia inhibitory factor (LIF) which signal by gp130 homodimerisation or LIFRβ/gp130 heterodimerisation on survival and hypertrophy was studied in neonatal rat cardiomyocytes. Both LIF and IL-6 [in the absence of soluble IL-6 receptor (sIL-6Rα)] activated Erk1/2, JNK1/2, p38-MAPK and PI3K signalling peaking at 20 min and induced cytoprotection against simulated ischemia-reperfusion injury which was blocked by the MEK1/2 inhibitor PD98059 but not the p38-MAPK inhibitor SB203580. In the absence of sIL-6R, IL-6 did not induce STAT1/3 phosphorylation, whereas IL-6/sIL-6R and LIF induced STAT1 and STAT3 phosphorylation. Furthermore, IL-6/sIL-6R induced phosphorylation of STAT1 Tyr701 and STAT3 Tyr705 were enhanced by SB203580. IL-6 and pheneylephrine (PE), but not LIF, induced cardiomyocyte iNOS expression and nitric oxide (NO) production. IL-6, LIF and PE induced cardiomyocyte hypertrophy, but with phenotypic differences in ANF and SERCA2 expression and myofilament organisation with IL-6 more resembling PE than LIF. Transfection of cardiomyocytes with full length or truncated chimaeric gp130 cytoplasmic domain/Erythropoietin receptor (EpoR) extracellular domain fusion constructs showed that the membrane proximal Box 1 and Box 2 containing region of gp130 was necessary and sufficient for MAPK and PI3K activation; hypertrophy; SERCA2 expression and iNOS/NO induction in the absence of JAK/STAT activation. In conclusion, IL-6 can signal in cardiomyocytes independent of sIL-6R and STAT1/3 and furthermore, that Erk1/2 and PI3K activation by IL-6 are both necessary and sufficient for induced cardioprotection. In addition, p38-MAPK may act as a negative feedback regulator of JAK/STAT activation in cardiomyocytes.  相似文献   

18.
An oncogenic form of RHAMM (receptor for hyaluronan-mediated motility, mouse, amino acids 163–794 termed RHAMMΔ163) is a cell surface hyaluronan receptor and mitotic spindle protein that is highly expressed in aggressive human cancers. Its regulation of mitotic spindle integrity is thought to contribute to tumor progression, but the molecular mechanisms underlying this function have not previously been defined. Here, we report that intracellular RHAMMΔ163 modifies the stability of interphase and mitotic spindle microtubules through ERK1/2 activity. RHAMM−/− mouse embryonic fibroblasts exhibit strongly acetylated interphase microtubules, multi-pole mitotic spindles, aberrant chromosome segregation, and inappropriate cytokinesis during mitosis. These defects are rescued by either expression of RHAMM or mutant active MEK1. Mutational analyses show that RHAMMΔ163 binds to α- and β-tubulin protein via a carboxyl-terminal leucine zipper, but in vitro analyses indicate this interaction does not directly contribute to tubulin polymerization/stability. Co-immunoprecipitation and pulldown assays reveal complexes of RHAMMΔ163, ERK1/2-MEK1, and α- and β-tubulin and demonstrate direct binding of RHAMMΔ163 to ERK1 via a D-site motif. In vitro kinase analyses, expression of mutant RHAMMΔ163 defective in ERK1 binding in mouse embryonic fibroblasts, and blocking MEK1 activity collectively confirm that the effect of RHAMMΔ163 on interphase and mitotic spindle microtubules is mediated by ERK1/2 activity. Our results suggest a model wherein intracellular RHAMMΔ163 functions as an adaptor protein to control microtubule polymerization during interphase and mitosis as a result of localizing ERK1/2-MEK1 complexes to their tubulin-associated substrates.  相似文献   

19.
20.
Interleukin (IL)-6 is a pleiotropic cytokine that not only affects the immune system, but also acts in other biological systems and many physiological events in various organs. In a target cell, IL-6 can simultaneously generate functionally distinct or sometimes contradictory signals through its receptor complex, IL-6Rα and gp130. One good illustration is derived from the in vitro observations that IL-6 promotes the growth arrest and differentiation of M1 cells through gp130-mediated STAT3 activation, whereas the Y759/SHP-2-mediated cascade by gp130 stimulation has growth-enhancing effects. The final physiological output can be thought of as a consequence of the orchestration of the diverse signaling pathways generated by a given ligand. This concept, the signal orchestration model, may explain how IL-6 can elicit proinflammatory or anti-inflammatory effects, depending on the in vivo environmental circumstances. Elucidation of the molecular mechanisms underlying this issue is a challenging subject for future research. Intriguingly, recent in vivo studies indicated that the SHP-2-binding site- and YXXQ-mediated pathways through gp130 are not mutually exclusive but affect each other: a mutation at the SHP-2-binding site prolongs STAT3 activation, and a loss of STAT activation by gp130 truncation leads to sustained SHP-2/ERK MAPK phosphorylation. Although IL-6/gp130 signaling is a promising target for drug discovery for many human diseases, the interdependence of each signaling pathway may be an obstacle to the development of a nonpeptide orally active small molecule to inhibit one of these IL-6 signaling cascades, because it would disturb the signal orchestration. In mice, a consequence of the imbalanced signals causes unexpected results such as gastrointestinal disorders, autoimmune diseases, and/or chronic inflammatory proliferative diseases. However, lessons learned from IL-6 KO mice indicate that IL-6 is not essential for vital biological processes, but a significant impact on disease progression in many experimental models for human disorders. Thus, IL-6/gp130 signaling will become a more attractive therapeutic target for human inflammatory diseases when a better understanding of IL-6 signaling, including the identification of the conductor for gp130 signal transduction, is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号