首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor 2 (FGF2) protein plays important roles in wound healing and tissue regeneration. Collagen is clinically used for wound care applications. We investigated the potential value of FGF2-functionalized collagen matrices for skeletal muscle tissue engineering. When C2C12 cells were treated with FGF2, cell adhesion increased after 3 and 5 days compared to the control (P < 0.05). Wound healing activity of FGF2 was slightly higher than the control through cell migration. Cell proliferation activity of FGF2-functionalized collagen matrices on C2C12 cells also increased. Taken together, FGF2 stimulated C2C12 myoblast growth by promoting cell adhesion, proliferation and wound healing activity after injury. The potential effect of FGF2-functionalized collagen matrices was also observed. Thus FGF2 stimulates skeletal muscle development and regeneration, thereby leading to potential utility for skeletal muscle tissue engineering.  相似文献   

2.

Background  

Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy.  相似文献   

3.
4.

Background  

Microarray profiling has the potential to illuminate the molecular processes that govern the phenotypic characteristics of porcine skeletal muscles, such as hypertrophy or atrophy, and the expression of specific fibre types. This information is not only important for understanding basic muscle biology but also provides underpinning knowledge for enhancing the efficiency of livestock production.  相似文献   

5.

Background  

The alterations in skeletal muscle structure and function after prolonged periods of unloading are initiated by the chronic lack of mechanical stimulus of sufficient intensity, which is the result of a series of biochemical and metabolic interactions spanning from cellular to tissue/organ level. Reduced activation of skeletal muscle alters the gene expression of myosin heavy chain isoforms to meet the functional demands of reduced mechanical load, which results in muscle atrophy and reduced capacity to process fatty acids. In contrast, chronic loading results in the opposite pattern of adaptations.  相似文献   

6.
Mechanical stimulation improves tissue-engineered human skeletal muscle   总被引:6,自引:0,他引:6  
Human bioartificial muscles (HBAMs) aretissue engineered by suspending muscle cells in collagen/MATRIGEL,casting in a silicone mold containing end attachment sites, andallowing the cells to differentiate for 8 to 16 days. The resultingHBAMs are representative of skeletal muscle in that they containparallel arrays of postmitotic myofibers; however, they differ in manyother morphological characteristics. To engineer improved HBAMs, i.e.,more in vivo-like, we developed Mechanical Cell Stimulator (MCS)hardware to apply in vivo-like forces directly to the engineeredtissue. A sensitive force transducer attached to the HBAM measuredreal-time, internally generated, as well as externally applied, forces.The muscle cells generated increasing internal forces during formationwhich were inhibitable with a cytoskeleton depolymerizer. Repetitivestretch/relaxation for 8 days increased the HBAM elasticity two- tothreefold, mean myofiber diameter 12%, and myofiber area percent 40%.This system allows engineering of improved skeletal muscle analogs aswell as a nondestructive method to determine passive force andviscoelastic properties of the resulting tissue.

  相似文献   

7.

Background

Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro.

Methods

To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry.

Results

More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes.

Conclusion

The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts.  相似文献   

8.

Background

The creation of functional skeletal muscle via tissue engineering holds great promise without sacrificing healthy donor tissue. Different cell types have been investigated regarding their myogenic differentiation potential under the influence of various media supplemented with growth factors. Yet, most cell cultures include the use of animal sera, which raises safety concerns and might lead to variances in results. Electrospun nanoscaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining both biocompatibility and stability.We therefore aimed to develop a serum-free myogenic differentiation medium for the co-culture of primary myoblasts (Mb) and mesenchymal stromal cells derived from the bone marrow (BMSC) and adipose tissue (ADSC) on electrospun poly-ε-caprolacton (PCL)-collagen I-nanofibers.

Results

Rat Mb were co-cultured with rat BMSC (BMSC/Mb) or ADSC (ADSC/Mb) two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-nanofibers. Differentiation media contained either AIM V, AIM V and Ultroser® G, DMEM/Ham’s F12 and Ultroser® G, or donor horse serum (DHS) as a conventional differentiation medium. In 2D co-culture groups, highest upregulation of myogenic markers could be induced by serum-free medium containing DMEM/Ham’s F12 and Ultroser® G (group 3) after 7 days. Alpha actinin skeletal muscle 2 (ACTN2) was upregulated 3.3-fold for ADSC/Mb and 1.7-fold for BMSC/Mb after myogenic induction by group 3 serum-free medium when compared to stimulation with DHS. Myogenin (MYOG) was upregulated 5.2-fold in ADSC/Mb and 2.1-fold in BMSC/Mb. On PCL-collagen I-nanoscaffolds, ADSC showed a higher cell viability compared to BMSC in co-culture with Mb. Myosin heavy chain 2, ACTN2, and MYOG as late myogenic markers, showed higher gene expression after long term stimulation with DHS compared to serum-free stimulation, especially in BMSC/Mb co-cultures. Immunocytochemical staining with myosin heavy chain verified the presence of a contractile apparatus under both serum free and standard differentiation conditions.

Conclusions

In this study, we were able to myogenically differentiate mesenchymal stromal cells with myoblasts on PCL-collagen I-nanoscaffolds in a serum-free medium. Our results show that this setting can be used for skeletal muscle tissue engineering, applicable to future clinical applications since no xenogenous substances were used.
  相似文献   

9.

Background  

The calcium activated protein phosphatase 2B, also known as calcineurin, has been implicated as a cell signaling molecule involved with transduction of physiological signals (free cytosolic Ca2+) into molecular signals that influence the expression of phenotype-specific genes in skeletal muscle. In the present study we address the role of calcineurin in mediating adaptations in myosin heavy chain (MHC) isoform expression and muscle mass using 3-month old wild-type (WT) and transgenic mice displaying high-level expression of a constitutively active form of calcineurin (MCK-CN* mice).  相似文献   

10.

Background

Mild cold exposure and overfeeding are known to elevate energy expenditure in mammals, including humans. This process is called adaptive thermogenesis. In small animals, adaptive thermogenesis is mainly caused by mitochondrial uncoupling in brown adipose tissue and regulated via the sympathetic nervous system. In humans, skeletal muscle is a candidate tissue, known to account for a large part of the epinephrine-induced increase in energy expenditure. However, mitochondrial uncoupling in skeletal muscle has not extensively been studied in relation to adaptive thermogenesis in humans. Therefore we hypothesized that cold-induced adaptive thermogenesis in humans is accompanied by an increase in mitochondrial uncoupling in skeletal muscle.

Methodology/Principal Findings

The metabolic response to mild cold exposure in 11 lean, male subjects was measured in a respiration chamber at baseline and mild cold exposure. Skeletal muscle mitochondrial uncoupling (state 4) was measured in muscle biopsies taken at the end of the respiration chamber stays. Mild cold exposure caused a significant increase in 24h energy expenditure of 2.8% (0.32 MJ/day, range of −0.21 to 1.66 MJ/day, p<0.05). The individual increases in energy expenditure correlated to state 4 respiration (p<0.02, R2 = 0.50).

Conclusions/Significance

This study for the first time shows that in humans, skeletal muscle has the intrinsic capacity for cold induced adaptive thermogenesis via mitochondrial uncoupling under physiological conditions. This opens possibilities for mitochondrial uncoupling as an alternative therapeutic target in the treatment of obesity.  相似文献   

11.

Background

Despite the initial promise of myoblast transfer therapy to restore dystrophin in Duchenne muscular dystrophy patients, clinical efficacy has been limited, primarily by poor cell survival post-transplantation. Murine muscle derived stem cells (MDSCs) isolated from slowly adhering cells (SACs) via the preplate technique, induce greater muscle regeneration than murine myoblasts, primarily due to improved post-transplantation survival, which is conferred by their increased stress resistance capacity. Aldehyde dehydrogenase (ALDH) represents a family of enzymes with important morphogenic as well as oxidative damage mitigating roles and has been found to be a marker of stem cells in both normal and malignant tissue. In this study, we hypothesized that elevated ALDH levels could identify murine and human muscle derived cell (hMDC) progenitors, endowed with enhanced stress resistance and muscle regeneration capacity.

Methodology/Principal Findings

Skeletal muscle progenitors were isolated from murine and human skeletal muscle by a modified preplate technique and unfractionated enzymatic digestion, respectively. ALDHhi subpopulations isolated by fluorescence activate cell sorting demonstrated increased proliferation and myogenic differentiation capacities compared to their ALDHlo counterparts when cultivated in oxidative and inflammatory stress media conditions. This behavior correlated with increased intracellular levels of reduced glutathione and superoxide dismutase. ALDHhi murine myoblasts were observed to exhibit an increased muscle regenerative potential compared to ALDHlo myoblasts, undergo multipotent differentiation (osteogenic and chondrogenic), and were found predominately in the SAC fraction, characteristics that are also observed in murine MDSCs. Likewise, human ALDHhi hMDCs demonstrated superior muscle regenerative capacity compared to ALDHlo hMDCs.

Conclusions

The methodology of isolating myogenic cells on the basis of elevated ALDH activity yielded cells with increased stress resistance, a behavior that conferred increased regenerative capacity of dystrophic murine skeletal muscle. This result demonstrates the critical role of stress resistance in myogenic cell therapy as well as confirms the role of ALDH as a marker for rapid isolation of murine and human myogenic progenitors for cell therapy.  相似文献   

12.

Background  

In this study, we examined the correlation between excitation-contraction coupling characteristics and skeletal muscle fibre type by (1) localizing the distribution of dihydropyridine receptor (DHPR) protein and (2) comparing the effect of DHPR blocker on muscles with different fibre type composition, in order to better understand the differences between contractile phenotypes of fibres and to explain the contradictory reports to date on the interaction of dihydropyridines with skeletal muscle isoform of DHPR.  相似文献   

13.

Background  

Electroporation (EP) is a widely used non-viral gene transfer method. We have attempted to develop an exact protocol to maximize DNA expression while minimizing tissue damage following EP of skeletal muscle in vivo. Specifically, we investigated the effects of varying injection techniques, electrode surface geometry, and plasmid mediums.  相似文献   

14.

Background

Viperid snakebite envenoming is characterized by prominent local tissue damage, including muscle necrosis. A frequent outcome of such local pathology is deficient skeletal muscle regeneration, which causes muscle dysfunction, muscle loss and fibrosis, thus provoking permanent sequelae that greatly affect the quality of life of patients. The causes of such poor regenerative outcome of skeletal muscle after viperid snakebites are not fully understood.

Methodology/Principal Findings

A murine model of muscle necrosis and regeneration was adapted to study the effects of the venom and isolated toxins of Bothrops asper, the medically most important snake in Central America. Gastrocnemius muscle was injected with either B. asper venom, a myotoxic phospholipase A2 (Mtx), a hemorrhagic metalloproteinase (SVMP), or saline solution. At various time intervals, during one month, tissue samples were collected and analyzed by histology, and by immunocytochemical and immunohistochemical techniques aimed at detecting muscle fibers, collagen, endothelial cells, myoblasts, myotubes, macrophages, TUNEL-positive nuclei, and axons. A successful regenerative response was observed in muscle injected with Mtx, which induces myonecrosis but does not affect the microvasculature. In contrast, poor regeneration, with fibrosis and atrophic fibers, occurred when muscle was injected with venom or SVMP, both of which provoke necrosis, microvascular damage leading to hemorrhage, and poor axonal regeneration.

Conclusions/Significance

The deficient skeletal muscle regeneration after injection of B. asper venom is likely to depend on the widespread damage to the microvasculature, which affects the removal of necrotic debris by phagocytes, and the provision of nutrients and oxygen required for regeneration. In addition, deficient axonal regeneration is likely to contribute to the poor regenerative outcome in this model.  相似文献   

15.
16.

Background  

Patients suffering from Intermittent Claudication (IC) experience repeated periods of muscle contraction with low blood flow, throughout the day and this may contribute to the hypothesised skeletal muscle abnormalities. However, no study has evaluated the consequences of intermittent contraction with low blood flow on skeletal muscle tissue. Our aim was to generate this basic physiological data, determining the 'normal' response of healthy skeletal muscle tissue. We specifically proposed that the metabolic responses to contraction would be modified under such circumstances, revealing endogenous strategies engaged to protect the muscle adenine nucleotide pool. Utilizing a canine gracilis model (n = 9), the muscle was stimulated to contract (5 Hz) for three 10 min periods (separated by 10 min rest) under low blood flow conditions (80% reduced), followed by 1 hr recovery and then a fourth period of 10 min stimulation. Muscle biopsies were obtained prior to and following the first and fourth contraction periods. Direct arterio-venous sampling allowed for the calculation of muscle metabolite efflux and oxygen consumption.  相似文献   

17.

Introduction

In addition to the pivotal roles of mast cells in allergic diseases, recent data suggest that mast cells play crucial roles in a variety of autoimmune responses. However, their roles in the pathogenesis of autoimmune skeletal muscle diseases have not been clarified despite their distribution in skeletal muscle. Therefore, the objective of this study is to determine the roles of mast cells in the development of autoimmune skeletal muscle diseases.

Methods

The number of mast cells in the affected muscle was examined in patients with dermatomyositis (DM) or polymyositis (PM). The susceptibility of mast cell-deficient WBB6F1-KitW/KitWv mice (W/Wv mice) to a murine model of polymyositis, C protein-induced myositis (CIM), was compared with that of wild-type (WT) mice. The effect of mast cell reconstitution with bone marrow-derived mast cells (BMMCs) on the susceptibility of W/Wv mice to CIM was also evaluated.

Results

The number of mast cells in the affected muscle increased in patients with PM as compared with patients with DM. W/Wv mice exhibited significantly reduced disease incidence and histological scores of CIM as compared with WT mice. The number of CD8+ T cells and macrophages in the skeletal muscles of CIM decreased in W/Wv mice compared with WT mice. Engraftment of BMMCs restored the incidence and histological scores of CIM in W/Wv mice. Vascular permeability in the skeletal muscle was elevated in WT mice but not in W/Wv mice upon CIM induction.

Conclusion

Mast cells are involved in the pathogenesis of inflammatory myopathy.  相似文献   

18.

Background

Weight loss is recognised as a marker of poor prognosis in patients with cancer but the aetiology of cancer cachexia remains unclear. The aim of the present study was to examine the relationships between CT measured parameters of body composition and the systemic inflammatory response in patients with primary operable colorectal cancer.

Patient and Methods

174 patients with primary operable colorectal cancer who underwent resection with curative intent (2003–2010). Image analysis of CT scans was used to measure total fat index (cm2/m2), subcutaneous fat index (cm2/m2), visceral fat index (cm2/m2) and skeletal muscle index (cm2/m2). Systemic inflammatory response was measured by serum white cell count (WCC), neutrophil:lymphocyte ratio (NLR) and the Glasgow Prognostic Score (mGPS).

Results

There were no relationships between any parameter of body composition and serum WCC or NLR. There was a significant relationship between low skeletal muscle index and an elevated systemic inflammatory response, as measured by the mGPS (p = 0.001). This was confirmed by linear relationships between skeletal muscle index and both C-reactive protein (r = −0.21, p = 0.005) and albumin (r = 0.31, p<0.001). There was no association between skeletal muscle index and tumour stage.

Conclusions

The present study highlights a direct relationship between low levels of skeletal muscle and the presence of a systemic inflammatory response in patients with primary operable colorectal cancer.  相似文献   

19.

Background  

It has been demonstrated that brief episodes of sublethal ischemia-reperfusion, so-called ischemic preconditioning, provide powerful tissue protection in different tissues such as heart, brain, skeletal muscle, lung, liver, intestine, kidney, retina, and endothelial cells. Although a recent study has claimed that there are no protective effects of ischemic preconditioning in rat testis, the protective effects of ischemic preconditioning on testicular tissue have not been investigated adequately. The present study was thus planned to investigate whether ischemic preconditioning has a protective effect on testicular tissue.  相似文献   

20.

Background  

The L-type Ca2+ channel formed by the dihydropyridine receptor (DHPR) of skeletal muscle senses the membrane voltage and opens the ryanodine receptor (RyR1). This channel-to-channel coupling is essential for Ca2+ signaling but poorly understood. We characterized a single-base frame-shift mutant of α1S, the pore subunit of the DHPR, that has the unusual ability to function voltage sensor for excitation-contraction (EC) coupling by virtue of expressing two complementary hemi-Ca2+ channel fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号