共查询到20条相似文献,搜索用时 15 毫秒
2.
López-Ferrer D Ramos-Fernández A Martínez-Bartolomé S García-Ruiz P Vázquez J 《Proteomics》2006,6(Z1):S4-11
Quantitative proteomics using stable isotopic 16O/18O labeling has emerged as a very powerful tool, since it has a number of advantages over other methods, including the simplicity of chemistry, the constant mass tag at the C termini and its general applicability. However, due to the small mass difference between labeled and unlabeled peptide species, this approach has usually been restricted to high-resolution mass spectrometers. In this study we explored whether the high-resolution scanning mode, together with the extremely high scanning speed of the linear IT allows the 16O/18O-labeling method to be used for accurate, large-scale quantitative analysis of proteomes. A protocol, including digestion, desalting, labeling, MS and quantitative analysis was developed and tested using protein standards and whole proteome extracts. Using this method we were able to identify and quantify 140 proteins from only 10 mug of a proteome extract from mesenchymal stem cells. Relative expression changes larger than twofold can be identified with this method at the 95% confidence level. Our results demonstrate that accurate quantitative analysis using 16O/18O labeling can be performed in the practice using linear IT MS, without compromising large-scale peptide identification efficiency. 相似文献
3.
Ramos-Fernández A López-Ferrer D Vázquez J 《Molecular & cellular proteomics : MCP》2007,6(7):1274-1286
Quantitative strategies relying on stable isotope labeling and isotope dilution mass spectrometry have proven to be a very robust alternative to the well established gel-based techniques for the study of the dynamic proteome. Postdigestion 18O labeling is becoming very popular mainly due to the simplicity of the enzyme-catalyzed exchange reaction, the peptide handling and storage procedures, and the flexibility and versatility introduced by decoupling protein digestion from peptide labeling. Despite recent progresses, peptide quantification by postdigestion 18O labeling still involves several computational problems. In this work we analyzed the behavior of large collections of peptides when they were subjected to postdigestion labeling and concluded that this process can be explained by a universal kinetic model. On the basis of this observation, we developed an advanced quantification algorithm for this kind of labeling. Our method fits the entire isotopic envelope to parameters related with the kinetic exchange model, allowing at the same time an accurate calculation of the relative proportion of peptides in the original samples and of the specific labeling efficiency of each one of the peptides. We demonstrated that the new method eliminates artifacts produced by incomplete oxygen exchange in subsets of peptides that have a relatively low labeling efficiency and that may be considered indicative of false protein ratio deviations. Finally using a rigorous statistical analysis based on the calculation of error rates associated with false expression changes, we showed the validity of the method in the practice by detecting significant expression changes, produced by the activation of a model preparation of T cells, with only 5 microg of protein in three proteins among a pool of more than 100. By allowing a full control over potential artifacts, our method may improve automation of the procedures for relative protein quantification using this labeling strategy. 相似文献
4.
Huang X Tian C Liu M Wang Y Tolmachev AV Sharma S Yu F Fu K Zheng J Ding SJ 《Journal of proteome research》2012,11(4):2091-2102
Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here, we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. With this platform, a total of 2481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex, were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1), and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC. 相似文献
5.
Proteolytic labeling in H2(18)O has been recently revived as a versatile method for proteomics research. To understand the molecular basis of the labeling process, we have dissected the process into two separate events: cleavage of the peptide amide bonds and exchange of the terminal carboxyl oxygens. It was demonstrated that both carboxyl oxygens can be catalytically labeled, independent of the cleavage step. Reaction kinetics of the tryptic 16O-to-18O exchange of YGGFMR, YGGFMK, and the tryptic digest of apomyoglobin were studied by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. A larger KM for the Lys-peptide (4400 +/- 700 microM), when compared to that of the Arg-peptide (KM 1300 +/- 300 microM), was mainly responsible for the slower reaction with YGGFMK (kcat/KM 0.64 +/- 0.14 microM(-1)min(-1)) compared to YGGFMR (kcat/KM 2.6 +/- 0.9 microM(-1)min(-1)). Multiplexed kinetic studies showed that endoprotease-catalyzed oxygen exchange is a general phenomenon, allowing homogeneous 18O2-coding of a variety of peptides. It was demonstrated for the first time that chymotrypsin 18O2-codes peptides during proteolysis. On the basis of the analyses reported here, we propose that proteolytic 18O labeling can be advantageously decoupled from protein digestion, and endoproteases can be used in a separate step to 18O2-code peptides for comparative studies after proteolysis has taken place. 相似文献
6.
The goal of this study was the development of a method for quantitative expression proteomics on the limited sample amounts obtained through laser capture microdissection (LCM) of tissues, e.g., approximately 10 000 cells, which typically contain roughly 1-4 microg protein. The 16O/18O labeling method was selected as an approach to measure differential expression. A sample preparation protocol including lysis, digestion and 16O/18O labeling was first developed for LCM cell samples. The selected protocol was examined using two LCM caps of 10 000 cells from invasive ductal carcinoma of the breast and shown to be repeatable. A further test of LC-IT-MS/MS in combination with the 16O/18O post-digestion labeling method for studying low level samples was conducted first on a single protein (BSA) and then on a 5-standard protein mixture digest of different protein amounts, each with a total content approximately 1 microg. Next, protein expression was compared between 10 000 cells, each of microdissected normal ductal epithelium and metastatic ductal carcinoma, using the developed method. The proteins from the microdissected cells were extracted, precipitated, digested with trypsin and then 16O/18O labeled. The normal and metastatic cell samples were analyzed using reversed phase LC-ESI-MS/MS on the ion trap mass spectrometer. A total of 76 proteins were identified. Some, such as mitochondrial isocitrate dehydrogenase, actin and 14-3-3 protein xi/delta were found to be significantly up-regulated in the breast tumor cells. 相似文献
7.
Alberto Biscontin Silvia Casara Stefano Cagnin Lucia Tombolan Angelo Rosolen Gerolamo Lanfranchi Cristiano De Pittà 《BMC molecular biology》2010,11(1):44
Background
microRNAs (miRNAs) are small single-stranded non-coding RNAs that act as crucial regulators of gene expression. Different methods have been developed for miRNA expression profiling in order to better understand gene regulation in normal and pathological conditions. miRNAs expression values obtained from large scale methodologies such as microarrays still need a validation step with alternative technologies. 相似文献8.
Uhl O Glaser C Demmelmair H Koletzko B 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2011,879(30):3556-3564
The relationship between lipid status and metabolism, infant development and health has widely been studied, but the importance of individual glycerophospholipid species for biological functions in infants has hardly been considered. We developed a method for quantitative analyses of plasma glycerophospholipids from small sample volume. Proteins were precipitated with methanol, which eliminated further sample preparation. The supernatant was analysed by reversed-phase HPLC using a gradient of water, methanol and isopropanol as mobile phase. Electrospray ionisation in negative mode in combination with tandem mass spectrometry enabled detection of specific fatty acids as fragments of glycerophospholipid species. With this combination of chromatography and mass spectrometry, PC, lyso-PC, PE and lyso-PE species and their relevant isobaric compounds were quantified. Method validation showed a linear working range between 0.05 μmol/L and 10 μmol/L in diluted plasma samples. The intra-assay coefficients of variation (n=6) ranged from 1.1% to 13.9%. Results were comparable with data of the human metabolome database and gas chromatographic fatty acid analyses. All quantitatively important PE and PC species are covered. The method can be applied for investigating dietary effects on plasma GP composition from small plasma volumes. 相似文献
9.
Qian WJ Monroe ME Liu T Jacobs JM Anderson GA Shen Y Moore RJ Anderson DJ Zhang R Calvano SE Lowry SF Xiao W Moldawer LL Davis RW Tompkins RG Camp DG Smith RD;Inflammation the Host Response to Injury Large Scale Collaborative Research Program 《Molecular & cellular proteomics : MCP》2005,4(5):700-709
Identification of novel diagnostic or therapeutic biomarkers from human blood plasma would benefit significantly from quantitative measurements of the proteome constituents over a range of physiological conditions. Herein we describe an initial demonstration of proteome-wide quantitative analysis of human plasma. The approach utilizes postdigestion trypsin-catalyzed 16O/18O peptide labeling, two-dimensional LC-FTICR mass spectrometry, and the accurate mass and time (AMT) tag strategy to identify and quantify peptides/proteins from complex samples. A peptide accurate mass and LC elution time AMT tag data base was initially generated using MS/MS following extensive multidimensional LC separations to provide the basis for subsequent peptide identifications. The AMT tag data base contains >8,000 putative identified peptides, providing 938 confident plasma protein identifications. The quantitative approach was applied without depletion of high abundance proteins for comparative analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Accurate quantification of changes in protein abundance was demonstrated by both 1:1 labeling of control plasma and the comparison between the plasma samples following LPS administration. A total of 429 distinct plasma proteins were quantified from the comparative analyses, and the protein abundances for 25 proteins, including several known inflammatory response mediators, were observed to change significantly following LPS administration. 相似文献
10.
Attema-de Jonge ME Bekkers JM Oudemans-van Straaten HM Sparidans RW Franssen EJ 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2008,862(1-2):257-262
After oral administration of tobramycin, as part of selective decontamination of the digestive tract (SDD) in critically ill patients, absorption of tobramycin from the gut into the blood may take place. To quantify low concentrations of tobramycin in human plasma, we developed and validated a simple (sample pre-treatment consisting of protein precipitation with acetonitrile using 200microl plasma), rapid (runtime 3min using a Pathfinder MR reversed-phase column) and sensitive (concentration range of 0.05-1.0mg/l using MS/MS detection) method. 相似文献
11.
Quantitative proteome analysis using differential stable isotopic labeling and microbore LC-MALDI MS and MS/MS 总被引:2,自引:0,他引:2
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples. 相似文献
12.
Knowledge of cleavage site specificity and activity are major prerequisites for understanding protease function. On the basis of a recently presented approach for proteomic identification of cleavage sites (PICS) in proteome-derived peptide libraries, we developed an isobaric labeling quantitative LC-MALDI-TOF/TOF MS/MS approach (Q-PICS) for simultaneous determination of cleavage site specificity and robust relative quantification of proteolytic events. For GluC-protease, 737 cleavage sites were identified in a yeast proteome-derived peptide library; 94.0% showed the typical GluC specificity for peptide bonds at glutamyl and aspartyl residues. The six-plex tandem mass tagging strategy allowed for three simultaneous replicates in a single run, guaranteeing high confidence and robust statistics for quantitative measurements. Using the quantitative capacity of Q-PICS, we performed a comparison of cleavage site specificity of GluC in two different buffer systems. The results support earlier findings describing that apparent difference between the buffer systems are probably caused by the inhibitory effect of bicarbonate on the overall GluC activity and that the preference for Glu-X bonds compared to Asp-X bonds is independent of the buffer system used. 相似文献
13.
We report an isotope labeling shotgun proteome analysis strategy to validate the spectrum-to-sequence assignments generated by using sequence-database searching for the construction of a more reliable MS/MS spectral library. This strategy is demonstrated in the analysis of the E. coli K12 proteome. In the workflow, E. coli cells were cultured in normal and (15)N-enriched media. The differentially labeled proteins from the cell extracts were subjected to trypsin digestion and two-dimensional liquid chromatography quadrupole time-of-flight tandem mass spectrometry (2D-LC QTOF MS/MS) analysis. The MS/MS spectra of the two samples were individually searched using Mascot against the E. coli proteome database to generate lists of peptide sequence matches. The two data sets were compared by overlaying the spectra of unlabeled and labeled matches of the same peptide sequence for validation. Two cutoff filters, one based on the number of common fragment ions and another one on the similarity of intensity patterns among the common ions, were developed and applied to the overlaid spectral pairs to reject the low quality or incorrectly assigned spectra. By examining 257,907 and 245,156 spectra acquired from the unlabeled and (15)N-labeled samples, respectively, an experimentally validated MS/MS spectral library of tryptic peptides was constructed for E. coli K12 that consisted of 9,302 unique spectra with unique sequence and charge state, representing 7,763 unique peptide sequences. This E. coli spectral library could be readily expanded, and the overall strategy should be applicable to other organisms. Even with this relatively small library, it was shown that more peptides could be identified with higher confidence using the spectral search method than by sequence-database searching. 相似文献
14.
To improve the utility of increasingly large numbers of available unannotated and initially poorly annotated genomic sequences for proteome analysis, we demonstrate that effective protein identification can be made on a large and unannotated genome. The strategy developed is to translate the unannotated genome sequence into amino acid sequence encoding putative proteins in all six reading frames, to identify peptides by tandem mass spectrometry (MS/MS), to localize them on the genome sequence, and to preliminarily annotate the protein via a similarity search by BLAST. These tasks have been optimized and automated. Optimization to obtain multiple peptide matches in effect extends the searchable region and results in more robust protein identification. The viability of this strategy is demonstrated with the identification of 223 cilia proteins in the unicellular eukaryotic model organism Tetrahymena thermophila, whose initial genomic sequence draft was released in November 2003. To the best of our knowledge, this is the first demonstration of large-scale protein identification based on such a large, unannotated genome. Of the 223 cilia proteins, 84 have no similarity to proteins in NCBI's nonredundant (nr) database. This methodology allows identifying the locations of the genes encoding these novel proteins, which is a necessary first step to downstream functional genomic experimentation. 相似文献
15.
16.
The potential capabilities of a new proteolytic 18O labeling method employing peptidyl-Lys metalloendopeptidase (Lys-N) have been demonstrated for use in comparative proteomics. Conditions (pH>or=9.5) have been found such that Lys-N incorporates only a single 18O atom into the carboxyl terminus of each proteolytically generated peptide. This 18O labeling method has a major advantage over current protelytic 18O labeling methods that generate a mixture of isotopic isoforms resulting from the incorporation of one or two 18O atoms into each peptide species by the proteases (trypsin, Lys-C, or Glu-C) used. We demonstrate that the single 18O atom incorporation property of Lys-N overcomes the major problem of the current proteolytic 18O labeling methods and provides accurate quantification results for isotopically labeled peptides. 相似文献
17.
Although differences in protein staining intensity can often be visualized by difference gel electrophoresis, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. We present a protocol for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using in-gel stable isotope labeling. In this protocol protein extracts from any source treated under two experimental conditions are resolved in two separate lanes by gel electrophoresis. Parallel gel regions of interest are reacted separately with either light or heavy isotope-labeled reagents, and the gel slices are then combined and digested with proteases. The resulting peptides are then analyzed by liquid chromatography/mass spectrometry (LC/MS) to determine relative abundance of light- and heavy-isotope lysine-containing peptide pairs and analyzed by LC/MS/MS for identification of sequence and modifications. This protocol should take approximately 24-26 h to complete, including the incubation time for proteolytic digestion. Additional time will be needed for data analysis and interpretation. 相似文献
18.
Delavenne X Gay-Montchamp JP Basset T 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2011,879(2):215-218
We described the development and full validation of rapid and accurate liquid chromatography method, coupled with tandem mass spectrometry detection, for quantification of meprobamate in human plasma with [(13)C-(2)H(3)]-meprobamate as internal standard. Plasma pretreatment involved a one-step protein precipitation with acetonitrile. Separation was performed by reversed-phase chromatography on a Luna MercuryMS C18 (20 mm×4 mm×3 μm) column using a gradient elution mode. The mobile phase was a mix of distilled water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. The selected reaction monitoring transitions, in electrospray positive ionization, used for quantification were 219.2→158.2 m/z and 223.1→161.1m/z for meprobamate and internal standard, respectively. Qualification transitions were 219.2→97.0 and 223.1→101.1 m/z for meprobamate and internal standard, respectively. The method was linear over the concentration range of 1-300 mg/L. The intra- and inter-day precision values were below 6.4% and accuracy was within 95.3% and 103.6% for all QC levels (5, 75 and 200 mg/L). The lower limit of quantification was 1 mg/L. Total analysis time was reduced to 6 min including sample preparation. The present method is successfully applied to 24/7 clinical toxicology and demonstrated its usefulness to detect meprobamate poisoning. 相似文献
19.
Eckel-Passow JE Oberg AL Therneau TM Mason CJ Mahoney DW Johnson KL Olson JE Bergen HR 《Bioinformatics (Oxford, England)》2006,22(22):2739-2745
MOTIVATION: Using stable isotopes in global proteome scans, labeled molecules from one sample are pooled with unlabeled molecules from another sample and subsequently subjected to mass-spectral analysis. Stable-isotope methodologies make use of the fact that identical molecules of different stable-isotope compositions are differentiated in a mass spectrometer and are represented in a mass spectrum as distinct isotopic clusters with a known mass shift. We describe two multivariable linear regression models for (16)O/(18)O stable-isotope labeled data that jointly model pairs of resolved isotopic clusters from the same peptide and quantify the abundance present in each of the two biological samples while concurrently accounting for peptide-specific incorporation rates of the heavy isotope. The abundance measure for each peptide from the two biological samples is then used in down-stream statistical analyses, e.g. differential expression analysis. Because the multivariable regression models are able to correct for the abundance of the labeled peptide that appear as an unlabeled peptide due to the inability to exchange the natural C-terminal oxygen for the heavy isotope, they are particularly advantageous for a two-step digestion/labeling procedure. We discuss how estimates from the regression model are used to quantify the variability of the estimated abundance measures for the paired samples. Although discussed in the context of (16)O/(18)O stable-isotope labeled data, the multivariable regression models are generalizable to other stable-isotope labeled technologies. 相似文献
20.
Typical mass spectrometry-based protein lists from purified fractions are confounded by the absence of tools for evaluating contaminants. In this report, we compare the results of a standard survey experiment using an ion trap mass spectrometer with those obtained using dual isotope labeling and a Q-TOF mass spectrometer to quantify the degree of enrichment of proteins in purified subcellular fractions of Arabidopsis plasma membrane. Incorporation of a stable isotope, either H(2)(18)O or H(2)(16)O, during trypsinization allowed relative quantification of the degree of enrichment of proteins within membranes after phase partitioning with polyethylene glycol/dextran mixtures. The ratios allowed the quantification of 174 membrane-associated proteins with 70 showing plasma membrane enrichment equal to or greater than ATP-dependent proton pumps, canonical plasma membrane proteins. Enriched proteins included several hallmark plasma membrane proteins, such as H(+)-ATPases, aquaporins, receptor-like kinases, and various transporters, as well as a number of proteins with unknown functions. Most importantly, a comparison of the datasets from a sequencing "survey" analysis using the ion trap mass spectrometer with that from the quantitative dual isotope labeling ratio method indicates that as many as one-fourth of the putative survey identifications are biological contaminants rather than bona fide plasma membrane proteins. 相似文献