首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract. Neurons of sea anemone tentacles receive stimuli via sensory cells and process and transmit information via a plexus of nerve fibers. The nerve plexus is best revealed by scanning electron microscopy of epidermal peels of the tentacles. The nerve plexus lies above the epidermal muscular layer where it appears as numerous parallel longitudinal and short interconnected nerve fibers in Calliactis parasitica . Bipolar and multipolar neurons are present and neurites form interneuronal and neuromuscular synaptic contacts. Transmission electron microscopy of cross sections of tentacles of small animals, both C. parasitica and Aiptasia pallida , reveals bundles of 50–100 nerve fibers lying above groups of longitudinal muscle fibers separated by intrusions of mesoglea. Smaller groups of 10–50 slender nerve fibers are oriented at right angles to the circular muscle formed by the bases of the digestive cells. The unmyelinated nerve fibers lack any glial wrapping, although some bundles of epidermal fibers are partially enveloped by cytoplasmic extensions of the muscle cells; small gastrodermal nerve bundles lie between digestive epithelial cells above their basal myonemes. A hypothetical model for sensory input and motor output in the epidermal and gastrodermal nerve plexuses of sea anemones is proposed.  相似文献   

2.
The systematic position of Polygordiidae is still under debate. They have been assigned to various positions among the polychaetes. Recent molecular analyses indicate that they might well be part of a basal radiation in Annelida, suggesting that certain morphological characters could represent primitive character traits adopted from the annelid stem species. To test this hypothesis, an investigation of the muscular and nervous systems by means of immunological staining and confocal laser scanning microscopy and transmission electron microscopy was conducted. With the exception of the brain, the nervous system is entirely basiepidermal and consists of the brain, the esophageal connectives, the subesophageal region, the ventral nerve cord and several smaller longitudinal nerves. These are connected by a considerable number of ring nerves in each segment. The ventral nerve cord is made up of closely apposed longitudinal neurite bundles, a median and two larger lateral ones. Since distinct ganglia are lacking, it represents a medullary cord. The muscular system mainly consists of longitudinal fibers, regularly distributed oblique muscles and strong septa. The longitudinal fibers form a right and a left unit separated along the dorsal midline, each divided into a dorsal and ventral part by the oblique muscles. Anteriorly, the longitudinal musculature passes the brain and terminates in the prostomium. There is no musculature in the palps. In contrast to earlier observations, regularly arranged minute circular muscle fibers are present. Very likely, a basiepithelial and non-ganglionic organization of the ventral nerve cord as well as an orthogonal nervous system represent plesiomorphic characters. The same applies for the predominance of longitudinal muscle fibers.  相似文献   

3.
To find out whether there is a real parallelism, as it was understood by Academician A.A. Zavarzin, in the structure of the basiepidermal nerve plexus in primitive representatives of such distant groups of animals, as polychaetes and phoronids, the experimental material obtained earlier on neuronal relations in Myriochele oculata (Polychaeta, Oweniidae) and Phoronopsis harmeri (Tentaculata, Phoronoidea) was analyzed. The similarity of the basiepidermal plexus in the representatives of polychaetes and phoronids has been shown to be merely apparent and has a convergent character, i.e., it does not belong to the type of systemic parallelisms. The structural differences revealed between these two considered evolutionary initial types of nerve plexuses are supposed to be a cause of different directions of differentiation of the Bilateria nervous system. The nerve plexus structure close, by its general organization, to that of oweniids can have many common features with the basiepidermal plexus of especially primitive turbellarias and xenoturbellids, whose neuronal relations are so far non-studied. At the same time, a similar nerve plexus could originate formation of the nervous system of some archiannelids (of the nerillids type), typical polychaetes, and primitive oligochaetes. The neuronal relations similar to those of phoronids probably had more chances to progress in evolution to the direction that is principally close to the neuronal relations in pogonophoras and typical Deuterostomata (including the lower chordates).  相似文献   

4.
Summary An analysis of the ultrastructure of the tube feet of three species of sea urchins (Strongylocentrotus franciscanus, Arbacia lixula and Echinus esculentus) revealed that the smooth muscle, although known to be cholinoceptive, receives no motor innervation.The muscle fibers are attached to a double layer of circular and longitudinal connective tissue which surrounds the muscle layer and contains numerous bundles of collagen fibers. On its outside, the connective tissue cylinder is invested by a basal lamina of the outer epithelium to which numerous nerve terminals are attached. These are part of a nerve plexus which surrounds the connective tissue cylinder. The plexus itself is an extension of a longitudinal nerve that extends the whole length of the tube foot. It is composed of axons, but nerve cell bodies and synapses are conspicuously lacking, suggesting that the axons and terminals derive from cells of the radial nerve. Processes of the epithelial cells penetrate the nerve plexus and attach to the basal lamina. There is no evidence that the epithelial cells function as sensory cells.On the basis of supporting evidence it is suggested that the transmitter released by the nerve terminals diffuses to the muscle cells over a distance of several microns and in doing so affects the mechanical properties of the connective tissue.Supported by the Sonderforschungsbereich 138 of the Deutsche Forschungsgemeinschaft  相似文献   

5.
Evolutionary relationships among members of the Lophophorata remain unclear. Traditionally, the Lophophorata included three phyla: Brachiopoda, Bryozoa or Ectoprocta, and Phoronida. All species in these phyla have a lophophore, which is regarded as a homologous structure of the lophophorates. Because the organization of the nervous system has been traditionally used to establish relationships among groups of animals, information on the organization of the nervous system in the lophophore of phoronids, brachiopods, and bryozoans may help clarify relationships among the lophophorates. In the current study, the innervation of the lophophore of the inarticulate brachiopod Lingula anatina is investigated by modern methods. The lophophore of L. anatina contains three brachial nerves: the main, accessory, and lower brachial nerves. The main brachial nerve is located at the base of the dorsal side of the brachial fold and gives rise to the cross neurite bundles, which pass through the connective tissue and connect the main and accessory brachial nerves. Nerves emanating from the accessory brachial nerve account for most of the tentacle innervation and comprise the frontal, latero-frontal, and latero-abfrontal neurite bundles. The lower brachial nerve gives rise to the abfrontal neurite bundles of the outer tentacles. Comparative analysis revealed the presence of many similar features in the organization of the lophophore nervous system in phoronids, brachiopods, and bryozoans. The main brachial nerve of L. anatina is similar to the dorsal ganglion of phoronids and the cerebral ganglion of bryozoans. The accessory brachial nerve of L. anatina is similar to the minor nerve ring of phoronids and the circumoral nerve ring of bryozoans. All lophophorates have intertentacular neurite bundles, which innervate adjacent tentacles. The presence of similar nerve elements in the lophophore of phoronids, brachiopods, and bryozoans supports the homology of the lophophore and the monophyly of the lophophorates.  相似文献   

6.
The Champy-Maillet osmium tetroxide-zinc iodide technique and a new method using azur B-sodium thioglycolate were used to study the general nervous tissue structure in planarians. A subepidermal and a submuscular nerve plexus, partially reported by earlier authors, are described, and a gastrodermal plexus is reported for the first time in triclads. The possible functions for each one of these plexuses are discussed. By the Champy-Maillet method, the innervation within the parenchyma appears as an array of numerous single nerve fibers that course between the parenchyma cells making apparent synaptic contacts. The pharynx has outer and inner nerve nets similar in structure to the submuscular nerve plexus. Both nerve nets are connected to each other by radial nerves. The central nervous system has a sponge-like structure with many lacunae filled with cell bodies, dorso-ventral muscle fibers, parenchymal cell processes and excretory ducts. The existence of this sponge-like nervous tissue structure is discussed in relation to the still incomplete centralization of the nervous tissue in these organisms, to the lack of a true vascular system and to the acoelomate level of organization. A comparison with the nervous tissue structure of more advanced groups like polyclads and nemertines is suggested.  相似文献   

7.
Two types of choanocyte-like cells have been found in the digestive tract of the starfish. Type I choanocytes are in the lining epithelium of all organs of the digestive system. These are narrow, columnar cells strongly anchored basally and expanded apically into a protuberance projecting into the lumen. A prominent flagellum surrounded by microvilli projects from the center of this protuberance. Apical cytoplasm contains numerous mitochondria, secondary lysosomes, and multivesicular bodies. A distinctive characteristic of these cells is a filament bundle that traverses the length of the cell from its region of attachment on the rootlet of the flagellar basal body to its terminus on the basal plasma membrane. Between the attenuated basal ends of type I cells are the nerve fibers of an intraepithelial nerve plexus. Thickness of the plexus is correlated with the quantity of type I cells in the epithelium. Type II choanocytes are in the cuboidal coelomic epithelium that forms the outer layer of digestive tract organs. These cells are smaller than those of type I, and they have an apical collar surmounted by a ring of 13 microvilli. Within the collar is a cup-shaped depression with a central flagellum. Coated vesicles, secondary lysosomes, and phagocytic infoldings are observed in and near the collar cytoplasm. Filament bundles similar to those in type I choanocytes are also observed in coelomic epithelial cells that are sufficiently tall. Injection of peroxidase into the stomach and ferritin into the coelom results in phagocytic uptake of these macromolecules by type I and type II choanocytes, respectively.  相似文献   

8.
9.
We describe the serotonergic and cholinergic nervous system of the asexually reproducing acoel Convolutriloba longifissura Bartolomaeus & Balzer, 1997 by means of immunohistochemistry, conventional histochemistry and transmission electron microscopy. Immunocytochemical staining for serotonin revealed neurons in the brain, in a pair of ventral main longitudinal cords, in two pairs of smaller dorsal longitudinal nerve cords, and in a submuscular nerve net. The brain comprises a ventral-anterior commissure and a less intensely stained dorsal commissure joined together by connectives into a three-ringed scaffold from which the longitudinal nerves extend. We followed the regeneration of the serotonergic part of the nervous system up to the second day after fission. Within this time period, the offspring reestablished bilateral symmetry in the nervous system and developed full motor control. The presence of aminergic cell bodies associated with the main lateral nerve cords of C. longifissura shows that the acoelan nervous system is more similar to that of other platyhelminths (triclads, rhabditophorans) than previously assumed. The presence of serotonergic cell bodies along the main nerve cord correlates with the capacity for asexual reproduction via fissioning. We also describe the single fission mode of C. hastifera Winsor 1990, which brings the modes of asexual reproduction employed by members of the Convolutrilobinae to three.  相似文献   

10.
The dorsal surface of the holothurioid Holothuria forskali bears several longitudinal rows of modified podia called papillae. Each papilla consists of a conical stem topped by an hemispherical bud. Their gross tissue stratification is the same all along the papilla being made up of four tissue layers, viz. an inner mesothelium, a connective tissue layer, a nerve plexus and an outer epidermis. The latter is differently organized according to whether it belongs to the stem or to the bud. The epidermis of the bud is built up by ciliated cells that intimately contact the nerve plexus and have the classical structure of echinoderm sensory cells. The papillae are thus sensory organs involved in mechanoreception and possibly chemoreception.  相似文献   

11.
l-Aspartate (l-Asp) is an excitatory neurotransmitter in the central nervous system. In the present study, we demonstrate, for the first time, the presence of l-Asp in a particular neuronal cell class in the enteric nervous system (ENS). Scattered l-Asp-immunoreactive neuronal cell bodies and nerve fibers were found extensively in both the myenteric and submucosal plexus throughout the small and large intestines. Many l-Asp-immunoreactive nerve fibers, which originated from intrinsic nerve cell bodies, were found in the ganglia and interconnecting nerve bundles. Electron microscopy revealed that l-Asp-immunoreactive terminals frequently formed synaptic contacts with intrinsic nerve cells, suggesting that some l-Asp-immunoreactive neurons might function as interneurons. These results suggest that l-Asp-immunoreactive neurons play a significant role within the ENS to control intestinal functions. The presence of enteric l-Asp-immunoreactive neurons provides strong support for the proposal that l-Asp is a neuromodulator in the rat ENS.  相似文献   

12.
The tertiary component of the myenteric plexus consists of interlacing fine nerve fibre bundles that run between its principal ganglia and connecting nerve strands. It was revealed by zinc iodide-osmium impregnation and substance P immunohistochemistry at the light-microscope level. The plexus was situated against the inner face of the longitudinal muscle and was present along the length of the small intestine at a density that did not vary markedly from proximal to distal. Nerve bundles did not appear to be present in the longitudinal muscle as judged by light microscopy, although numberous fibre bundles were encountered within the circular muscle layer. At the ultrastructural level, nerve fibre bundles of the tertiary plexus were found in grooves formed by the innermost layer of longitudinal smooth muscle cells. In the distal parts of the small intestine, some of these nerve fibre bundles occasionally penetrated the longitudinal muscle coat. Vesiculated profiles in nerve fibre bundles of the tertiary plexus contained variable proportions of small clear and large granular vesicles; they often approached to within 50–200 nm of the longitudinal smooth muscle cells. Fibroblast-like cells lay between strands of the tertiary plexus and the circular muscle but were never intercalated between nerve fibre varicosities and the longitudinal muscle. These anatomical relationships are consistent with the tertiary plexus being the major site of neurotransmission to the longitudinal muscle of the guinea-pig small intestine.  相似文献   

13.
The structure of the larval nervous system and the musculature of Phoronis pallida were studied, as well as the remodeling of these systems at metamorphosis. The serotonergic portion of the apical ganglion is a U-shaped field of cell bodies that send projections into a central neuropil. The majority of the serotonergic cells are (at least) bipolar sensory cells, and a few are nonsensory cells. Catecholaminergic cell bodies border the apical ganglion. The second (hood) sense organ develops at competence and is composed of bipolar sensory cells that send projections into a secondary neuropil. Musculature of the competent larva includes circular and longitudinal muscle fibers of the body wall, as well as elevators and depressors of the tentacles and hood. The juvenile nervous system and musculature are developed prior to metamorphosis and are integrated with those of the larva. Components of the juvenile nervous system include a diffuse neural net of serotonergic cell bodies and fibers and longitudinal catecholaminergic fibers. The juvenile body wall musculature consists of longitudinal fibers that overlie circular muscle fibers, except in the cincture regions, where this pattern is reversed. Metamorphosis is initiated by the larval neuromuscular system but is completed by the juvenile neuromuscular system. During metamorphosis, the larval nervous system and the musculature undergo cell death, and the larval tentacles and gut are remodeled into the juvenile arrangement. Although the phoronid nervous system has often been described as deuterostome-like, these data show that several cytological aspects of the larval and juvenile neuromuscular systems also have protostome (lophotrochozoan) characteristics.  相似文献   

14.
Catecholamines have been extensively reported to be present in most animal groups, including members of Echinodermata. In this study, we investigated the presence and distribution of catecholaminergic nerves in two members of the Holothuroidea, Holothuria glaberrima (Selenka, 1867) (Aspidochirotida, Holothuroidea) and Holothuria mexicana (Ludwig, 1875) (Aspidochirotida, Holothuroidea), by using induced fluorescence for catecholamines on tissue sections and immunohistochemistry with an antibody that recognizes tyrosine hydroxylase. The presence of a catecholaminergic nerve plexus similar in distribution and extension to those previously reported in other members of Echinodermata was observed. This plexus, composed of cells and fibers, is found in the ectoneural component of the echinoderm nervous system and is continuous with the circumoral nerve ring and the radial nerves, tentacular nerves, and esophageal plexus. In addition, fluorescent nerves in the tube feet are continuous with the catecholaminergic components of the radial nerve cords. This is the first comprehensive report on the presence and distribution of catecholamines in the nervous system of Holothuroidea. The continuity and distribution of the catecholaminergic plexus strengthen the notion that the catecholaminergic cells are interneurons, since these do not form part of the known sensory or motor circuits and the fluorescence is confined to organized nervous tissue.  相似文献   

15.
Neurocalcin-like immunoreactivity in the rat esophageal nervous system   总被引:1,自引:0,他引:1  
Neurocalcin is a newly identified neuronal calcium-binding protein. We tried here to investigate the immunohistochemical distribution of neurocalcin in the rat esophagus. Nerve cell bodies having neurocalcin immunoreactivity were found throughout the myenteric plexus. In the myenteric ganglia, two types of nerve terminals showed neurocalcin immunoreactivity. One was varicose terminals containing numerous small clear vesicles and forming a synapse with nerve cells. The other terminals were characterized by laminar or pleomorphic structure and many mitochondria. These laminar terminals were supposed to be sensory receptors of the esophageal wall. In the motor endplates of the striated muscles, nerve terminals containing many small clear vesicles and mitochondria also had neurocalcin immunoreactivity. After left vagus nerve cutting under the nodose ganglia, the number of immunopositive thick nerve fibers, laminar endings and nerve terminals on the striated muscles decreased markedly. Retrograde tracing experiments using Fast Blue showed extrinsic innervation of esophagus from ambiguus nucleus, dorsal motor nucleus of vagus, superior cervical ganglia, celiac ganglia, nodose ganglia and dorsal root ganglia. In the celiac ganglia, nodose ganglia and dorsal root ganglia, retrogradely labeled nerve cells were neurocalcin-immunoreactive. Neurons in the celiac ganglia may project varicose terminals, while nodose and dorsal root neurons project laminar terminals. Although cell bodies of motoneurons in the ambiguus nucleus lacked neurocalcin immunoreactivity, these neurons may contain neurocalcin only in the nerve terminals in the motor endplates. Neurocalcin immunoreactivity is distributed in many extrinsic and intrinsic neurons in the esophagus and this protein may play important roles in regulating calcium signaling in the neurons.  相似文献   

16.
Very little is known about esophageal innervation in the hamster. In the present study, we used protein gene product 9.5 (PGP 9.5) to determine immunohistochemically the architectural features of the enteric nervous system in the hamster esophagus. The myenteric plexus consisted of a loose and irregular network of ganglia and interganglionic nerve bundles. The density of the neurons in the myenteric plexus was relatively low (479 +/- 75/cm(2), n = 5), with a preferentially higher density in the upper cervical portion than other parts of the esophagus. Regional differences in the number of PGP 9.5-positive neurons and ganglia were observed. PGP 9.5-immunoreactive fibers in the ganglia often branched, giving rise to expanding nerve endings of laminar morphology resembling intraganglionic laminar endings described in rats and cats. Fine varicose fibers originating from the secondary plexus were occasionally observed near the motor endplates, suggested a dual innervation of the striated muscle. The submucosal plexus was free from ganglionated plexus. A regional difference in the submucosal nervous network was observed. The number of motor endplates in the inner muscle layer was higher than that in the outer muscle layer.  相似文献   

17.

Introduction

Among bryozoans, cyclostome anatomy is the least studied by modern methods. New data on the nervous system fill the gap in our knowledge and make morphological analysis much more fruitful to resolve some questions of bryozoan evolution and phylogeny.

Results

The nervous system of cyclostome Crisia eburnea was studied by transmission electron microscopy and confocal laser scanning microscopy. The cerebral ganglion has an upper concavity and a small inner cavity filled with cilia and microvilli, thus exhibiting features of neuroepithelium. The cerebral ganglion is associated with the circumoral nerve ring, the circumpharyngeal nerve ring, and the outer nerve ring. Each tentacle has six longitudinal neurite bundles. The body wall is innervated by thick paired longitudinal nerves. Circular nerves are associated with atrial sphincter. A membranous sac, cardia, and caecum all have nervous plexus.

Conclusion

The nervous system of the cyclostome C. eburnea combines phylactolaemate and gymnolaemate features. Innervation of tentacles by six neurite bundles is similar of that in Phylactolaemata. The presence of circumpharyngeal nerve ring and outer nerve ring is characteristic of both, Cyclostomata and Gymnolaemata. The structure of the cerebral ganglion may be regarded as a result of transformation of hypothetical ancestral neuroepithelium. Primitive cerebral ganglion and combination of nerve plexus and cords in the nervous system of C. eburnea allows to suggest that the nerve system topography of C. eburnea may represent an ancestral state of nervous system organization in Bryozoa. Several scenarios describing evolution of the cerebral ganglion in different bryozoan groups are proposed.
  相似文献   

18.
Using the method of the anterograde dextran tetramethylrhodamin transport, there is obtained the topographic picture of branching of inferior cervical nerve axons on fibers of the dorsal longitudinal muscle in Lymnaea stagnalis (L.). Using the retrograde staining, the neuronal bodies sending their processes into this nerve are marked. Manifestations of asymmetry in distribution of neurons stained through the right and left nerves are described. The electron microscopic studies have shown that the main number of the inferior cervical nerve axons is represented by thin fibers presumably belonging to the sensory cells. A part of the nerve fibers and their endings show imunoreactivity to serotonin and acetylcholine. The serotoninergic fibers predominate quantitatively over the cholinergic ones and account for a half of the fibers stained with dextran. A possible functional role of the serotoninergic and cholinergic innervation of the dorsal longitudinal muscle in Lymnaea stagnalis is discussed.Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 40, No. 6, 2004, pp. 569–578.  相似文献   

19.
Calbindin D28k, previously demonstrated in the mammalian central nervous system, has been localized to discrete neurons in the enteric nervous system of the rat. Calbindin D28k is present in cell bodies in both the myenteric and submucous plexi and in interganglionic nerve fibers in all regions of the gastrointestinal tract. Immunoreactive nerve fibers were also detected in the mucosal region, although none were observed in the pyloric sphincter, circular or longitudinal muscle layers. The highest concentration of immunoreactivity was present in the submucosal plexus and mucosa of the colon. Western blot analysis of the protein detected by the antiserum confirmed that it comigrated with purified calbindin D28k and the single immunoreactive band seen in extracts from rat brain. The colocalization of calbindin D28k with components of the peptidergic innervation was also investigated. Of the peptides studied the neurons containing both vasoactive intestinal polypeptide and neuropeptide Y in the submucous plexus were seen to exhibit calbindin D28k immunoreactivity. The neurons containing somatostatin, galanin and substance P did not demonstrate co-localization. In the stomach, calbindin D28k was detected within a small number of epithelial cells which were found to correspond to a sub-population of the somatostatin-immunoreactive endocrine cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号