首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A specific and reliable HPLC-PDA method for the quantitative determination of triamcinolone acetonide, budesonide and fluticasone propionate (as internal standards) in small volumes of microdialysate and rat plasma was developed. An efficient solid-phase extraction (SPE) procedure for plasma samples yielded extremely clean extracts with overall recovery of 104.3% and 95.7% for triamcinolone acetonide (TA) and fluticasone propionate, respectively. Plasma extracts obtained after SPE and microdialysis samples were directly injected on a C18 column to separation. The method has been validated with good linearity, sensitivity, specificity and high accuracy (RE -5.28% to 9.14%) and precision (CV 0.50% to 6.62%) on both matrices. In stability studies, TA and budesonide were stable during storage and assay procedures. The method was applied to a pharmacokinetic study in rodents using microdialysis to determine protein unbound TA concentrations in blood and muscle.  相似文献   

2.
A selective HPLC method with fluorescence detection for the determination of roxithromycin (ROX) in human plasma was described. After solid-phase extraction (SPE), ROX and erythromycin (internal standard, I.S.) were derivatized by treatment with 9-fluorenylmethyl chloroformate (FMOC-Cl). Optimal resolution of fluorescence derivatives of ROX and I.S. was obtained during one analytical run using reversed phase, C(18) column. The mobile phase was composed of potassium dihydrogenphosphate solution, pH 7.5 and acetonitrile. Fluorescence of the compounds was measured at the maximum excitation, 255 nm and emission, 313 nm, of ROX derivatives. Validation parameters of the method were also established. After SPE, differences in recoveries of ROX and erythromycin from human plasma were observed. The linear range of the standard curve of ROX in plasma was 0.5-10.0 mg/l. The validated method was successfully applied for pharmacokinetic studies of ROX after administration of a single tablet of ROX.  相似文献   

3.
An enantioselective HPLC bioassay has been developed relying on extraction of (R)- and (S)-atenolol from alkalinized plasma or serum (pH > 12) into dichloromethane containing 5% (v/v) 1-butanol followed by an achiral derivatization of the drug with phosgene leading to (R)- and (S)-oxazolidine-2-one derivatives. Under these conditions there was quantitative conversion of the acetamido group to the corresponding nitrile. These stable derivatives were separated on a (R,R)-diaminocylohexane-dinitrobenzoyl chiral stationary phase [(R,R)-DACH-DNB] using dichloromethane/methanol 98/2 as mobile phase. Determination limits of 0.5 ng for (R)- and 0.6 ng for (S)-atenolol could be achieved using fluorimetric detection. The assay was applied to a human pharmacokinetic study which was performed in a randomized cross-over, double-blind fashion in 12 healthy volunteers, administering single oral doses of 100 mg (R,S)-, 50 mg (R)-, and 50 mg (S)-atenolol AUC0–24 and Cmax values of (R)-atenolol were slightly but significant higher than those of (S)-atenolol. The R/S ratios were 1.09 for AUC(R)/AUC(S) and 1.03 for Cmax (R)/Cmax(S) (P < 0.01) respectively after administration of the racemic drug. However, there were no differences between AUC, Cmax, and t½ values of each enantiomer, whether they were administered as single enantiometers or in the form of its racemic mixture. © 1993 Wiley-Liss, Inc.  相似文献   

4.
A sensitive high‐performance liquid chromatographic (HPLC) method was developed for the determination of nizatidine in human plasma. Nizatidine was derivatized by 4‐fluoro‐7‐nitrobenzofurazan (NBD‐F). Chromatographic separation was performed on a Inertsil C18 column (150 mm × 4.6 mm, 5 µm) using isocratic elution by a mobile phase consisting of methanol/water (55:45) at a flow rate of 1.2 mL/min. Amlodipine was used as the internal standard (IS). Fluorescence detector was used operated at 461 nm (excitation) and 517 nm (emission), respectively. The calibration curve was linear over the range of 50–2000 ng/mL. This method was successfully applied to a pharmacokinetic study after oral administration of a dose (150 mg) of nizatidine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A new HPLC method was developed for the estimation of carboxylic acid metabolite of clopidogrel bisulfate in rat plasma using atorvastatin as internal standard. Plasma samples were extracted with a mixture of ethyl acetate and di-chloro methane (80:20, v/v) followed by subsequent reconstitution in a mixture of water:methanol:acetonitrile (40:40:20, v/v). The chromatographic separation was achieved with gradient elution on Kromasil ODS, 250 mm x 4.6 mm i.d., 5 microm analytical column maintained at 30 degrees C. Carboxylic acid metabolite of clopidogrel as well as the internal standard were detected at a wavelength of 220 nm. The method was validated as per USFDA guidelines. Calibration curves were linear in the concentration range of 125.0-32,000 ng/ml and the correlation coefficient was better than 0.999. The extraction efficiency for the carboxylic acid metabolite of clopidogrel was more than 85.76%. The intra-day accuracy ranged from 98.9% to 101.5% with a precision of 1.30% to 6.06%. Similarly, the inter-day accuracy was between 96.2% and 101.1% with a precision of 3.47% to 4.30%. The drug containing plasma samples were stable at -70 degrees C for 48 days and at ambient temperature for 24h. In the auto-sampler maintained at 15 degrees C, the processed and reconstituted samples were stable for 35 h. The drug containing frozen plasma samples were stable enough to with stand three freeze thaw cycles. The method was successfully applied to the pharmacokinetic study of the two different polymorphs of clopidogrel bisulfate in Wistar rat.  相似文献   

6.
A sensitive liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of rosuvastatin in human plasma. The plasma samples were prepared using liquid-liquid extraction with ethyl ether. Chromatographic separation was accomplished on a Zorbax XDB-C18 (150 mm x 4.6 mm i.d., 5 microm) column. The mobile phase consisted of methanol-water (75:25, v/v, adjusted to pH 6 by aqueous ammonia). Detection of rosuvastatin and the internal standard (IS) hydrochlorothiazide was achieved by ESI MS/MS in the negative ion mode. The lower limit of quantification was 0.020 ng/ml by using 200 microl aliquots of plasma. The linear range of the method was from 0.020 to 60.0 ng/ml. The intra- and inter-day precisions were lower than 8.5% in terms of relative standard deviation (RSD), and the accuracy was within -0.3 to 1.9% in terms of relative error (RE). Compared with the existing methods, the validated method offered increased sensitivity. The method was successfully applied for the evaluation of pharmacokinetics of rosuvastatin after single oral doses of 5, 10 and 20 mg rosuvastatin to 10 healthy volunteers.  相似文献   

7.
A simple chromatographic assay based on ultra high performance liquid chromatography with ultraviolet detection at 295 nm is proposed to determinate simultaneously human plasma concentrations of imipenem, doripenem, meropenem and ertapenem. After deproteinization by acetonitrile, carbapenems are separated on a PentaFluoroPhenyl column with a binary gradient elution. This method is specific, accurate, precise (the intra-day and inter-day imprecision and inaccuracy are lower than 15%), sensitive (the limit of quantitation is equal to 0.50 mg/L for imipenem, doripenem, ertapenem, meropenem) and not time consuming (run time=7 min). An application of this method to measure ertapenem plasma concentrations in burn patients is presented.  相似文献   

8.
A high performance liquid chromatographic method for the determination of a biocompatible iron chelator, pyridoxal 2-chlorobenzoyl hydrazone (o-108), in rabbit plasma was developed and validated. The separation was achieved on a C18 column with the mobile phase composed of a mixture of 0.01 M phosphate buffer (pH 6) with the addition of EDTA (2 mM), methanol and acetonitrile (42:24:14; v/v/v). The method was validated with respect to selectivity, linearity (0.8-150 microg/mL), intra- and inter-day variability and stability. This method was successfully applied to the analysis of the samples obtained from a pilot pharmacokinetic experiment, in which the chelator was administered intravenously to rabbits.  相似文献   

9.
A sensitive and specific high-performance liquid chromatographic method with fluorescence detection (excitation wavelength: 280 nm; emission wavelength: 360 nm) was developed and validated for the determination of vinorelbine in plasma and blood samples. The sample pretreatment procedure involved two liquid–liquid extraction steps. Vinblastine served as the internal standard. The system uses a Spherisorb cyano analytical column (250×4.6 mm I.D.) packed with 5 μm diameter particles as the stationary phase and a mobile phase of acetonitrile–80 mM ammonium acetate (50:50, v/v) adjusted to pH 2.5 with hydrochloric acid. The assay showed linearity from 1 to 100 ng/ml in plasma and from 2.5 to 100 ng/ml in blood. The limits of quantitation were 1 ng/ml and 2.5 ng/ml, respectively. Precision expressed as RSD was in the range 3.9 to 20% (limit of quantitation). Accuracy ranged from 92 to 120%. Extraction recoveries from plasma and blood averaged 101 and 75%, respectively. This method was used to follow the time course of the concentration of vinorelbine in human plasma and blood samples after a 10-min infusion period of 20 mg/m2 of this drug in patients with metastatic cancer.  相似文献   

10.
An analytical method based on high-performance liquid chromatographic (HPLC) was developed for the determination of montelukast in human plasma using mefenamic acid as an internal standard. After precipitation of plasma proteins with acetonitrile, chromatographic separation was carried out using a Zorbax Eclipse XDB C8 (150 mm x 4.6 mm i.d., 5 microm) with mobile phase consisted of methanol-acetonitrile-0.04M disodium hydrogen orthophosphate (22:22:56, v/v, pH 4.9). The wavelengths of fluorescence detection were set at 350 nm for excitation and 450 nm for emission. The linearity was confirmed in the concentration range of 5-1000 ng/ml in human plasma. Intra- and inter-day accuracy determined from quality control samples were 101.50 and 107.24%, and 97.15 and 100.37%, respectively. Intra- and inter-day precision measured as coefficient of variation were < or =4.72 and < or =9.00%, respectively. Extraction recoveries of drug from plasma were >48.14%. The protocol herein described was employed in a pharmacokinetic study of tablet formulation of montelukast in healthy Thai male volunteers.  相似文献   

11.
In the present study a method to quantify chlorpromazine in human plasma using cyclobenzaprine as the internal standard (IS) is described. The analyte and the IS were extracted from human plasma by a liquid-liquid extraction with diethyl ether/dichloromethane (70/30, v/v) and analyzed by an ultra performance liquid chromatography (UPLC) coupled to an electrospray tandem triple quadrupole mass spectrometer in positive mode (UPLC-ES(+)-MS/MS). Chromatography was performed isocratically on an Aquity UPLC BEH C18 1.7 μm (50 mm × 2.1 mm i.d.) operating at 40°C. The mobile phase was a mixture of 65% water+1% formic acid and 35% of acetonitrile at a flow-rate of 0.5 mL/min. The lowest concentration quantified was 0.5 ng/mL and a linear calibration curve over the range 0.5-200 ng/mL was obtained, showing intra-assay precisions from 2.4 to 5.8%, and inter-assay precisions from 3.6 to 9.9%. The intra-assay accuracies ranged from 96.9 to 102.5%, while the inter-assay accuracies ranged from 94.1 to 100.3%. This analytical method was applied in a relative bioavailability study in order to compare a test chlorpromazine 100 mg simple dose formulation versus a reference in 57 volunteers of both sexes. The study was conducted in an open randomized two-period crossover design and with a fourteen days washout period. Plasma samples were obtained over a 144-h interval. Since the 90% CI for both C(max), AUC(last) and AUC(0-inf) were within the 80-125% interval proposed by the Food and Drug Administration and ANVISA, it was concluded that chlorpromazine 100 mg/dose was bioequivalent to the reference formulation, according to both the rate and extent of absorption.  相似文献   

12.
A rapid, sensitive and simple high-performance liquid chromatographic (HPLC) method with ultraviolet detector (UV) has been developed for the determination of bifendate in 100 microl plasma of rats. Sample preparation was carried out by deproteinization with 100 microl of acetonitrile. A 20 microl of supernatant was directly injected into the HPLC system with methanol-double distilled water (65/35, v/v) as the mobile phase at a flow rate of 1.0 ml/min. Separation was performed with a microBondapak C(18) column at 30 degrees C. The peak was detected at 278 nm. The calibration curve was linear (r(2)=0.9989) in the concentration range of 0.028-2.80 microg/ml in plasma. The intra- and inter-day variation coefficients were not more than 6.55% and 6.07%, respectively. The limit of detection was 5 ng/ml. The mean recoveries of bifendate were ranged from 94.53% to 99.36% in plasma. The present method has been successfully applied to the pharmacokinetic study of bifendate liposome in rats.  相似文献   

13.
A sensitive and reproducible high performance liquid chromatography (HPLC)-UV method for determination of nicousamide, an inhibitor of rennin and transforming growth factor-beta1 (TGF-beta1) type II receptors, has been developed and validated. Following acetonitrile deproteiniation, samples were separated by isocratic reversed-phase HPLC on an Aichrom Bond-AQ C(18) column and quantified using UV detection at 320 nm. The mobile phase was acetonitrile/water (ratio 62:38 containing 0.1% H(3)PO(4)), with a flow-rate of 1.0 ml/min. A linear curve over the concentration range 5-200 ng/ml (r(2)=0.9978) was obtained. The coefficients of the variation for the intra- and inter-day precisions ranged from 1.4-10.7% and 1.8-7.1%, respectively. The percentage of relative recovery was 91.56-105.45%. The method was used to determine the plasma concentration-time profiles for nicousamide after oral doses of 30, 100 and 300 mg/kg in dogs. A nonlinear pharmacokinetics was found in dogs at doses from 30 to 300 mg/kg. Following 30 mg/kg oral dose, the C(max) and AUC in females were lower than that in male. There is a potential for accumulation in dogs following multiple doses.  相似文献   

14.
A sensitive and selective liquid chromatography-tandem spectrometry method for the determination of zolmitriptan was developed and validated over the linearity range 0.05-30 ng/ml with 0.5 ml of plasma using diphenhydramine as the internal standard. Liquid-liquid extraction using a mixture of diethyl ether and dichloromethane was used to extract the drug and the internal standard from plasma. The mass spectrometer was operated under the selected reaction monitoring (SRM) mode using the atmospheric pressure chemical ionization (APCI) technique. The instrument parameters were optimized to obtain 3.0 min run time. The mobile phase consisted of acetonitrile-water-formic acid (70:30:0.5), at a flow rate of 0.5 ml/min. In positive mode, zolmitriptan produced a protonated precursor ion at m/z 288 and a corresponding product ion at m/z 58. And internal standard produced a protonated precursor ion at m/z 256 and a corresponding product ion at m/z 167. The inter- and intra-day precision (%R.S.D.) were less than 8.5% and accuracy (%error) was less than -2.5%. The method had a lower limit of quantification of 0.05 ng/ml for zolmitriptan, which offered increased sensitivity and selectivity of analysis, compared with existing methods. The method was successfully applied to a pharmacokinetic study of zolmitriptan after an oral administration of 5 mg zolmitriptan to 20 healthy volunteers.  相似文献   

15.
A highly sensitive and simple high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantification of dibenzoylmethane (DBM) in rat plasma. DBM and internal standard (I.S.) 1-(5-chloro-2-hydroxy-4-methylphenyl)-3-phenyl-1,3-propanedione (CHMPP) were extracted from rat plasma by ethyl acetate/methanol (95:5, v/v) and analyzed using reverse-phase gradient elution with a Phenomenex Gemini C18 5-mum column. A gradient of mobile phase (mobile phase A: water/methanol (80:20, v/v) with 0.1% TFA and mobile phase B: acetonitrile with 0.1% TFA) at a flow rate of 0.2 mL/min, and ultraviolet (UV) detection at 335 nm were utilized. The lower limit of quantification (LLOQ) using 50 microL rat plasma was 0.05 microg/mL. The calibration curve was linear over a concentration range of 0.05-20 microg/mL. The mean recoveries were 80.6+/-5.7, 83.4+/-1.6 and 77.1+/-3.4% with quality control (QC) level of 0.05, 1 and 20 microg/mL, respectively. Intra- and inter-day assay accuracy and precision fulfilled US FDA guidance for industry bioanalytical method validation. Stability studies showed that DBM was stable in rat plasma after 4h incubation at room temperature, one month storage at -80 degrees C and three freeze/thaw cycles, as well as in reconstitute buffer for 48 h at 4 degrees C. The utility of the assay was confirmed by the successful analysis of plasma samples from DBM pharmacokinetics studies in the rats after oral and intravenous administrations.  相似文献   

16.
Atomoxetine is the first, non-stimulant alternative to other stimulant medications used for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). Reported methods for the determination of atomoxetine include expensive liquid chromatography tandem mass spectrometry (LCMS) and high performance liquid chromatography (HPLC) with liquid scintillation counting (LSC) detection. Till date, no method has been reported in literature to determine atomoxetine using HPLC with UV detection. In this paper, we describe a new HPLC method for the determination of atomoxetine using liquid-liquid extraction with tertiary butyl methyl ether and UV detector. This method was found to be linear over the concentration range of 0.05-3.0 microg/ml. The limit of quantification was 0.05 microg/ml. Intra- and inter-day precision was <15% and accuracy was in the range of 95.67-108.80%. Stability studies showed that atomoxetine was stable in human plasma for short- and long-term period for sample preparation and analysis. This method was used for sample analysis in a pharmacokinetic study of atomoxetine (25mg) in five healthy adult female volunteers. The observed mean+/-S.D. pharmacokinetic parameters Cmax, Tmax and AUC(0-t) were 0.40+/-0.06 microg/ml, 3.40+/-0.42 h and 1.34+/-0.52 microg h/ml, respectively.  相似文献   

17.
A rapid and simple high-performance liquid chromatographic (HPLC) method has been developed for the determination of p-coumaric acid in rat plasma and applied to a pharmacokinetic study in rats after administration of a prodrug, E-6-O-p-coumaroyl scandoside methyl ester, isolated from Hedyotis diffusa (Willd.). Sample preparation involved protein precipitation with acetonitrile. The supernatant was then injected onto a Diamonsil C(18) column (250 mm x 4.6mm i.d., 5 microm). The mobile phase consisted of acetonitrile-water (21:79, v/v) with 1% glacial acetic acid. The UV detector was set at 310 nm. The lower limit of quantification of p-coumaric acid in rat plasma was 0.02 microg/mL. The calibration curves were linear over the concentration range 0.02-5 microg/mL with correlations greater than 0.999. The assay procedure was applied to the study of the metabolite pharmacokinetics of E-6-O-p-coumaroyl scandoside methyl ester in rat.  相似文献   

18.
A sensitive, precise and accurate quantitative LC-MS/MS method for the measurement of naproxen in human plasma was developed and completely validated according to current FDA and EMA guidelines. The new method employs acetonitrile protein precipitation for sample preparation and uses ketoprofen as the internal standard. Suitability of the new assay was assessed in comparison with 36 reported bioanalytical assays and the pharmacokinetic results obtained by the new method were compared to 11 reported studies in humans. The principal advantage of this LC-MS/MS method is the simultaneous achievement of high absolute recovery (90.0±3.6%), acceptable sensitivity (lower limit of quantitation of 0.100 μg/mL), high inter-day precision (CV≤9.4%), high analytical recovery (between 94.4 and 103.1%), and excellent linearity over the concentration range 0.100-50.0 μg/mL (r(2)≥0.998) combined with a short run time of only 2 min.  相似文献   

19.
An enantioselective high performance liquid chromatographic-electrospray ionization mass spectrometric (HPLC-ESI-MS) method for the direct determination of several beta-adrenergic blockers was developed and validated. The method is based on the direct separation of the enantiomers of drugs on a laboratory-made chiral stationary phase (CSP) containing covalently bonded teicoplanin (TE) as chiral selector. Detection of the effluent was performed by electrospray ionization mass spectrometry, run in the selected-ion recording (SIR) mode. The method was applied to the pharmacokinetic monitoring of sotalol (STL) in the plasma of five young healthy volunteers, dosed with racemic drug. The limits of quantitation (LOQ) reached 4 ng/ml for both sotalol enantiomers. Such a method, fully validated, offers a novel, fast and very efficient tool for the direct determination of sotalol enantiomers in human plasma, and can be generally applied to the beta-adrenergic blockers stereoselective pharmacokinetics.  相似文献   

20.
A validated new, simple and highly sensitive reversed-phase HPLC method is developed for studying the pharmacokinetics of germacrone after intravenous administration of zedoary turmeric oil (ZTO) oil-in-water microemulsion. The method did not require a complex and expensive equipment. A high extraction recovery (>80%) of germacrone was obtained. Linear calibration curves obtained with the peak-area ratio (y) of germacrone to internal standard (tanshinoneIIA) versus drug concentration (x) were found to be linear between 8.08 and 808 ng/ml. The limit of quantitation was 8.08 ng/ml.The monitored compounds were completely separated from others in ZTO and from endogenous species in plasma by HPLC. Pharmacokinetic investigations were performed on 18 male rabbits after intravenous administration of ZTO microemulsion via the ear vein at germacrone doses of 3.2, 6.4 and 9.6 mg/kg. The plasma concentration-time data fit to a two-compartment intravenous model with a weight of 1/C(2) (C: germacrone concentration in plasma). Germacrone exhibited linear pharmacokinetics after intravenous administration of ZTO microemulsion to rabbits over the germacrone dose range 3.2-9.6 mg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号