首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen degradation is required for the creation of new integrin binding sites necessary for cell survival. However, a complete separation between the matrix and the cell leads to apoptosis, dilatation, and failure. Previous studies have demonstrated increased metalloproteinase activity in the failing myocardium. To test the hypothesis that disintegrin metalloproteinase (DMP) is induced in human heart end-stage failure, left ventricle tissue from ischemic cardiomyopathic (ICM, n = 10) and dilated cardiomyopathic (DCM, n = 10) human hearts were obtained at the time of orthotopic cardiac transplant. Normal (n = 5) tissue specimens were obtained from unused hearts. The levels of reduced oxygen species (ROS) were 12 +/- 2, 25 +/- 3, and 16 +/- 2 nmol (means +/- SE, P < 0.005) in normal, ICM, and DCM, respectively, by spectrofluorometry. The percent levels of endothelial cells were 100 +/- 15, 35 +/- 19, and 55 +/- 11 in normal, ICM, and DCM, respectively, by CD31 labeling. The levels of nitrotyrosine by Western analysis were significantly increased, and endothelial nitric oxide (NO) by the Griess method was decreased in ICM and DCM compared with normal tissue. The synthesis and degradation of beta(1)-integrin and connexin 43 were significantly increased in ICM and DCM compared with normal hearts by Western analysis. Levels of DMP were increased, and levels of cardiac inhibitor of metalloproteinase (CIMP) were decreased. Aggrecanase activity of DMP was significantly increased in ICM and DCM hearts compared with normal. These results suggest that the occurrence of cardiomyopathy is significantly confounded by the increase in ROS, nitrotyrosine, and DMP activity. This increase is associated with decreased NO, endothelial cell density, and CIMP. In vitro, treatment of CIMP abrogated the DMP activity. The treatment with CIMP may prevent degradation of integrin and connexin and ameliorate heart failure.  相似文献   

2.
This study examined whether increased superoxide (O(2)(-).) production contributes to coronary endothelial dysfunction and decreased coronary blood flow (CBF) in congestive heart failure (CHF). To test this hypothesis, the effects of the low-molecular-weight SOD mimetic M40401 on CBF and myocardial oxygen consumption (MVo(2)) were examined in dogs during normal conditions and after CHF was produced by 4 wk of rapid ventricular pacing. The development of CHF was associated with decreases of left ventricular (LV) systolic pressure, maximum first derivative of LV pressure, MVo(2), and CBF at rest and during treadmill exercise as well as endothelial dysfunction with impaired vasodilation in response to intracoronary acetylcholine. M40401 increased CBF (18 +/- 5%, P < 0.01) and MVo(2) (14 +/- 6%, P < 0.01) in CHF dogs and almost totally reversed the impaired CBF response to acetylcholine. M40401 had no effect on acetylcholine-induced coronary vasodilation, CBF, or MVo(2) in normal dogs. Western blot analysis demonstrated that extracellular SOD (EC-SOD) was significantly decreased in CHF hearts, whereas mitochondrial Mn-containing SOD was increased. Cytosolic Cu/Zn-containing SOD was unchanged. Both increased O(2)(-). production and decreased vascular O(2)(-). scavenging ability by EC-SOD could have contributed to endothelial dysfunction in the failing hearts.  相似文献   

3.
In this study we tested the hypothesis that reduced myofibrillar ATPase activities in end-stage heart failure are associated with a redistribution of myosin isozymes. Cardiac myofibrils were isolated from left ventricular free wall from normal human hearts and hearts at end-stage heart failure caused by coronary artery diseases, cardiomyopathy or immunological rejection. The hearts had been excised in preparation for a heart transplant. Myofibrillar Ca2–-dependent Mg-ATPase and myosin Ca- and KEDTA-ATPase activities were compared. Possible changes in myosin isozyme distribution in the diseased heart were investigated using polyacrylamide gel electrophoresis of native myosin in the presence of pyrophosphate. Significant reduction in myofibrillar Ca2+-dependent Mg-ATPase with no changes in the sensitivity of the myofibrils to Ca+ was observed in heart with coronary artery diseases (25.2 to 27.1% at pCa 5.83 to pCa 5.05), cardiomyopathy (21.1 to 25.5% at pCa 5.41 to pCa 5.05), and in the immunologically rejected heart (18.4 to 22.8% at pCa 5.41 to pCa 5.05). Significantly lower myosin Ca2+-ATPase was observed with coronary artery diseases only and myosin K-EDTA activities did not differ in diseased and normal hearts. Polyacrylamide gel electrophoresis of native myosin from the normal and three models of end-stage heart failure revealed two distinct bands in the human left ventricle and one diffuse band in the human right atria. No apparent differences in myosin isoenzyme pattern were observed between the normal and diseased hearts. Further evaluation is needed to clarify the ATPase nature of the two bands.  相似文献   

4.
The 3rd coronary artery, whose anatomical significance is defined, is a normal variant of the conus branch of the right coronary artery. This study involved the stereoscopic comparative investigation of human fetal hearts from 13 to 40 weeks of age and human adult hearts from 18 to 88 a of age. The incidence of the 3rd coronary artery in human fetuses was 45 out of 218 or 20.6%. No clear sexual differences were observed. Anastomoses had already developed between the 3rd coronary and the branches of the left anterior descending artery during the fetal stage. The 3rd coronary artery orifices in human fetuses was located at 9 o'clock (+/- 0 degree) most frequent (48.9%), and at 8 o'clock (-30 degrees) most infrequent (22.2%). The incidence of the 3rd coronary artery in human adults was 36.8%. In the human adult's normal group, the orifice was located at 9 o'clock (+/- 0 degree) most frequent (59.0%), and at 8 o'clock (-30 degrees) most infrequent (14.8%), while on the other hand in the pathologic group, the orifice was located at 9 o'clock (+/- 0 degree) most frequent (54.9%) and at 10 o'clock (+30 degrees) most infrequent (11.5%). Further, multiple 3rd coronary artery orifices, which were not observed in human fetal hearts, were observed in the human adults' heart. Furthermore, the existence of multiple orifices and the fact that human adult hearts had a higher incidence than human fetal hearts suggests the possibility that the 3rd coronary artery develops after birth.  相似文献   

5.
To determine whether the effects of fatty acids on the diabetic heart during ischemia involve altered glycolytic ATP and proton production, we measured energetics and intracellular pH (pH(i)) by using (31)P NMR spectroscopy plus [2-(3)H]glucose uptake in isolated rat hearts. Hearts from 7-wk streptozotocin diabetic and control rats, perfused with buffer containing 11 mM glucose, with or without 1.2 mM palmitate or the ketone bodies, 4 mM beta-hydroxybutyrate plus 1 mM acetoacetate, were subjected to 32 min of low-flow (0.3 ml x g wet wt(-1) x min(-1)) ischemia, followed by 32 min of reperfusion. In control rat hearts, neither palmitate nor ketone bodies altered the recovery of contractile function. Diabetic rat hearts perfused with glucose alone or with ketone bodies, had functional recoveries 50% lower than those of the control hearts, but palmitate restored recovery to control levels. In a parallel group with the functional recoveries, palmitate prevented the 54% faster loss of ATP in the diabetic, glucose-perfused rat hearts during ischemia, but had no effect on the rate of ATP depletion in control hearts. Palmitate decreased total glucose uptake in control rat hearts during low-flow ischemia, from 106 +/- 17 to 52 +/- 12 micromol/g wet wt, but did not alter the total glucose uptake in the diabetic rat hearts, which was 42 +/- 5 micromol/g wet wt. Recovery of contractile function was unrelated to pH(i) during ischemia; the glucose-perfused control and palmitate-perfused diabetic hearts had end-ischemic pH(i) values that were significantly different at 6.36 +/- 0.04 and 6.60 +/- 0.02, respectively, but had similar functional recoveries, whereas the glucose-perfused diabetic hearts had significantly lower functional recoveries, but their pH(i) was 6.49 +/- 0.04. We conclude that fatty acids, but not ketone bodies, protect the diabetic heart by decreasing ATP depletion, with neither having detrimental effects on the normal rat heart during low-flow ischemia.  相似文献   

6.
The study compared the effects of regional hypoxia and acidosis on Rb(+) uptake and energetics in isolated pig hearts perfused by the Langendorff method. The left anterior descending artery (LAD) was cannulated and the LAD bed was perfused with the same specific flow as the whole heart. Following equilibration with normal Krebs-Henseleit buffer (KHB, pO(2) 568 mm Hg, pH 7.42) the perfusate was switched to one that contained Rb(+) (Rb-KHB). Simultaneously, perfusion through the LAD was carried out with hypoxic (pO(2)=31 mm Hg), an acidemic (pH 7.12) or normal (pO(2)=550 mm Hg) Rb-KHB for 120 min. (87)Rb images of the entire heart or localized (31)P spectra from the left ventricular anterior wall were acquired. Hypoxia decreased the maximal (87)Rb image intensity and Rb(+) flux in the anterior wall to 79+/-9% and 85+/-7%, respectively, of that in the posterior wall. Extracellular acidosis did not affect (87)Rb image intensity and reduced Rb(+) flux (83+/-10%). During hypoxia phosphocreatine and ATP decreased to 36+/-10 and 50+/-15% of baseline, respectively and intracellular pH (pHi) decreased to 6.90+/-0.05. Extracellular acidosis did not affect the phosphocreatine or ATP levels but reduced pHi (7.06+/-0.18 vs. 7.26+/-0.06 in control). We suggest that intracellular acidosis plays a role in the inhibition of Rb(+) uptake during hypoxia.  相似文献   

7.
Hearts from rats pretreated either with L-triiodothyronine (T3) or with L-thyroxine (T4) exhibited changed function curve characteristics on the working heart apparatus compared with hearts from vehicle-treated rats. There was no supersensitivity of the hyperthyroid myocardium to the inotropic effect of isoproterenol as estimated by pD2 values. There were significant increases in +dP/dt and -dP/dt in hyperthyroid working hearts over the entire range of the function curve. T3 hearts showed much shorter relaxation times and total contraction times throughout the function curve. T4 hearts showed significantly reduced relaxation times and total contraction times as compared with control at all left atrial filling pressures under 15 cm of water. At high filling pressures T4 heart relaxation times and total contraction times were not different from control, but were however, significantly increased from those of T3 hearts. Area under the left ventricular pressure curve was unchanged by thyroid hormone pretreatment. Heart weight increased about 15% following either T3 or T4 treatment while the increases in (+) or (-) dP/dt and the left ventricular developed pressure (LVDP) were about 20-30%. The increase in cardiac mass certainly played a role in the increased cardiac function. Potency of isoproterenol in hyperthyroid working heart preparations was unchanged from control. The pD2 values, as determined from +dP/dt data, were 8.8 +/- 0.15 for T3-treated hearts, 8.25 +/- 0.40 for T4-treated hearts, and 8.18 +/- 0.12 for euthyroid hearts. While the mechanism(s) for the altered performance of the hyperthyroid working heart are not absolutely known, possible biochemical and physiological changes which may be implicated are discussed.  相似文献   

8.
Background: Midazolam is a frequently used benzodiazepine in anaesthesiology and intensive care. Aim: The aim of pilot study was to monitor its effect during heart perfusion in the laboratory rat. Methods: The same groups of animals (n = 10). The 1(st) group was treated with midazolam in a dose of 0.5mg/kg i.p. The 2(nd) group was a placebo. After i.p. administration of heparine injection of 500 IU dose, the hearts were excised and perfused (modified Langendorf's method). Working schedule: stabilization/ischaemia/reperfusion proceed at intervals of 20/30/60 min. Monitored parameters in isolated heart: left ventricle pressure (LVP), end-diastolic pressure (LVEDP), contractility (+dP/dt(max)). Results: The treated hearts showed improved postischemic recovery, reaching LVP values of 92 +/- 6 % at the end of the reperfusion, placebo only 61 +/- 7 %. In placebo hearts LVEDP rose from 10.0 +/- 0.5 mmHg to 43 +/- 4 mmHg after, in treated animals only about 25 mmHg. The treated hearts improved +dP/dt(max) recovery during reperfusion to 91 +/- 8 %. These values were significantly greater than those obtained from the placebo hearts. Conclusions: Positive changes in monitored parameters were found in this experimental pilot study. We conclude that the administration of midazolam in laboratory rats has a cardioprotective potential against ischemia-reperfusion induced injury.  相似文献   

9.
Previous studies have suggested that anodal pacing enhances electrical conduction in the heart near the pacing site. It was hypothesized that enhanced conduction by anodal pacing would also enhance ventricular pressure in the heart. Left ventricular pressure measurements were made in isolated, Langendorff-perfused rabbit hearts by means of a Millar pressure transducer with the use of a balloon catheter fixed in the left ventricle. The pressure wave was analyzed for maximum pressure (Pmax) generated in the left ventricle and the work done by the left ventricle (Parea). Eight hearts were paced with monophasic square-wave pulses of varying amplitudes (2, 4, 6, and 8 V) with 100 pulses of each waveform delivered to the epicardium. Anodal stimulation pulses showed statistically significant improvement in mechanical response at 2, 4, and 8 V. Relative to unipolar cathodal pacing, unipolar anodal pacing improved Pmax by 4.4 +/- 2.3 (SD), 5.3 +/- 3.1, 3.5 +/- 4.9, and 4.8 +/- 1.9% at 2, 4, 6, and 8 V, respectively. Unipolar anodal stimulation also improved Parea by 9.0 +/- 3.0, 12.0 +/- 6.0, 10.1 +/- 7.7, and 11.9 +/- 6.0% at 2, 4, 6, and 8 V, respectively. Improvements in Pmax and Parea indicate that an anodally paced heart has a stronger mechanical response than does a cathodally paced heart. Anodal pacing might be useful as a novel therapeutic technology to treat mechanically impaired or failed hearts.  相似文献   

10.
In the failing heart, an imbalance in matrix metalloproteinases (MMPs) and their biological regulators, the tissue inhibitors of MMPs (TIMPs), may result in cardiac dilatation from matrix degradation. We hypothesized that a reduction of myocardial TIMP-3 is associated with adverse matrix remodeling in both human and experimental heart failure. Cardiomyopathic hamsters at age 15 wk (normal), 25 wk (compensated stage), and 35 wk (overt failure) were compared with age-matched normal controls. MMP activity (gelatinase bioassay) was increased in cardiomyopathic hearts (P = 0.03) and peaked during the transition to overt heart failure. TIMP-3 content (immunoblot) was decreased compared with normal controls (74 +/- 5% at 25 wk, 69 +/- 10% at 35 wk; P = 0.001) and its reduction was associated with increased MMP activity (r = -0.6; P = 0.004). TIMP-1 increased progressively (P = 0.001), whereas TIMP-2, TIMP-4, and MMP protein levels were unchanged. Myocardial collagen (hydroxyproline content) increased with time during the progression to end-stage cardiac failure (P < 0.0001). Collagen synthesis ([(14)C]proline uptake) was elevated in cardiomyopathy at 15 and 25 wk (P < 0.05). The collagen cross-linking ratio (insoluble:soluble collagen) was reduced (P = 0.003) as the left ventricle dilated. By confocal microscopy restricted to viable myocardium, collagen content was reduced (P = 0.04) with fragmentation (P < 0.0001) and thinning (P = 0.003) of perimysial collagen fibers. Similarly, patients with end-stage congestive heart failure (n = 7) compared with nonfailing controls (n = 2) had elevated gelatinase MMP activity (P = 0.02) associated with isolated reductions in TIMP-3 (55 +/- 5% of normal; P = 0.003). Reductions of TIMP-3 parallel adverse matrix remodeling in the cardiomyopathic hamster and the failing human heart. TIMP-3 may contribute to the regulation of myocardial remodeling and its reduction may promote a transition from compensated to end-stage congestive heart failure.  相似文献   

11.
12.
We speculated that the increased vulnerability of the immature rabbit heart to global ischemia might be due to an increased susceptibility to free radical injury. To evaluate this, we exposed newborn (age 2.4 +/- 0.3 days, n = 20) (mean +/- SEM), juvenile (2 to 3 weeks, mean 16.6 +/- 0.5 days, n = 20), and adult (5 to 7 months old, n = 20) isolated, isovolumic, Krebs perfused rabbit hearts to oxygen radicals or cumene hydroperoxide. Control hearts showed no deterioration in left ventricular developed pressure over 60 min (newborns = 104 +/- 11%, juveniles = 101 +/- 7%, and adults = 113 +/- 12% of baseline, n = 5 for each age group). After only 30 min of oxygen radical exposure, the newborn group developed pressure decreased to 49 +/- 6% of the baseline value, while juveniles and adults were functioning at 70 +/- 10% and 83 +/- 6% of baseline, respectively (n = 10 for each age group) (P less than 0.05, newborn different from adult group). In contrast to the oxygen radical protocol, the hearts exposed to cumene hydroperoxide showed no significant difference between the age groups in deterioration of left ventricular function. There was no significant difference between the age groups in ATP content or thiobarbituric reactive substances following the oxygen radical exposure. We conclude that the newborn rabbit heart is significantly more vulnerable than the adult heart to the toxic effects of oxygen radicals. This may account, in part, for age related differences in response to global ischemia and reperfusion.  相似文献   

13.
Acute effects of triiodothyronine (T3) on postischemic myocardial stunning and intracellular Ca2+ contents were studied in the isolated working hearts of streptozotocin-induced diabetic rats and age-matched controls. After two weeks of diabetes, serum T3 and T4 levels were decreased to 62.5% and 33.9% of control values. Basal preischemic cardiac performance did not differ between diabetic and control rats. In contrast, during reperfusion after 20-min ischemia, diabetic rats exhibited an impaired recovery of heart rate (at 30-min reperfusion 57.5% of baseline vs. control 88.5%), left ventricular (LV) systolic pressure (44.1% vs. 89.5%), and cardiac work (23.1% vs. 66.0%). When 1 and 100 nM T3 was added before ischemia, heart rate was recovered to 77.2% and 81.8% of baseline, LV systolic pressure to 68.3% and 81.9%, and cardiac work to 50.8% and 59.0%, respectively. Diabetic rat hearts showed a higher Ca2+ content in the basal state and a further increase after reperfusion (4.96+/-1.17 vs. control 3.78+/-0.48 micromol/g, p<0.01). In diabetic hearts, H+ release was decreased after reperfusion (5.24+/-2.21 vs. 8.70+/-1.41 mmol/min/g, p<0.05). T3 administration caused a decrease in the postischemic Ca2+ accumulation (lnM T3 4.66+/-0.41 and 100 nM T3 3.58+/-0.36) and recovered the H+ release (lnM T3 16.2+/-3.9 and 100 nM T3 11.6+/-0.9). T3 did not alter myocardial O2 consumption. Results suggest that diabetic rat hearts are vulnerable to postischemic stunning, and T3 protects the myocardial stunning possibly via inhibiting Ca2+ overload.  相似文献   

14.
The effects of hypoxic hypoxia on the concentration of taurine in right ventricles was studied in the hearts of male CF1 mice caged individually and maintained for 16 hr per day in a hypobaric chamber evacuated to an air pressure of 307 mm Hg. After 23 days hearts were excised and right and left ventricles were separated and lyophilized. Hematocrits in chamber animals were 77-82%, compared to 45-49% for control mice. Mean weights of right ventricles of animals from the chamber were 11.2 +/- 0.9, compared to control values of 7.0 +/- 0.4, mg dry weight. The mean dry weights of left ventricles in both groups of animals were the same. There were no significant differences in the nmoles taurine per mg day tissue in either heart chamber, with mean values +/- S.E.M. of 124.0 +/- 4.6 and 135.0 +/- 4.5 in right ventricles and 128.0 +/- 4.3 and 110.9 +/- 15.3 in left ventricles of experimental and control animals respectively. Thus, hypertrophy which results from hypoxia is not accompanied by increased concentrations of taurine in right ventricles.  相似文献   

15.
We investigated the effect of insulin on total and regional myocardial blood flow (MBF) and glucose uptake (MGU) in healthy subjects (50 +/- 5 yr) by means of positron emission tomography (PET) with oxygen-15-labeled water (H(2)(15)O) and fluorine-18 labeled fluorodeoxyglucose ((18)FDG) before and during physiological hyperinsulinemia (40 mU.min(-1).m(-2)). Twelve male subjects were included in the study. During hyperinsulinemia, MBF increased from 0.91 +/- 0.28 to 1.01 +/- 0.31 ml.min(-1).g(-1) (n = 7 patients, P = 0.05; n = 112 regions, P < 0.005). Intersubject variability ranged from -3.0 to +41%. MGU increased from 0.11 +/- 0.08 (n = 5) to 0.56 +/- 0.08 micromol.min(-1).g(-1) (P < 0.0001, n = 7). MBF and insulin-mediated MGU were higher in the septum and anterior and lateral wall along short-axis regions of the heart. During hyperinsulinemia, MBF was also higher in the apex and midventricle compared with the base. MBF and MGU were positively correlated before (r = 0.66, P < 0.0001) and during hyperinsulinemia (r = 0.24, P < 0.05). These results provide evidence that insulin stimulates MBF in normal human hearts and appears to involve mainly those regions of the heart where insulin-mediated MGU is higher. Furthermore, regional distribution of insulin-stimulated MBF and MGU does not appear to be uniform across the left ventricular wall of healthy subjects.  相似文献   

16.
We hypothesized that low-pressure reperfusion may limit myocardial necrosis and attenuate postischemic contractile dysfunction by inhibiting mitochondrial permeability transition pore (mPTP) opening. Male Wistar rat hearts (n = 36) were perfused according to the Langendorff technique, exposed to 40 min of ischemia, and assigned to one of the following groups: 1) reperfusion with normal pressure (NP = 100 cmH(2)O) or 2) reperfusion with low pressure (LP = 70 cmH(2)O). Creatine kinase release and tetraphenyltetrazolium chloride staining were used to evaluate infarct size. Modifications of cardiac function were assessed by changes in coronary flow, heart rate (HR), left ventricular developed pressure (LVDP), the first derivate of the pressure curve (dP/dt), and the rate-pressure product (RPP = LVDP x HR). Mitochondria were isolated from the reperfused myocardium, and the Ca(2+)-induced mPTP opening was measured using a potentiometric approach. Lipid peroxidation was assessed by measuring malondialdehyde production. Infarct size was significantly reduced in the LP group, averaging 17 +/- 3 vs. 33 +/- 3% of the left ventricular weight in NP hearts. At the end of reperfusion, functional recovery was significantly improved in LP hearts, with RPP averaging 10,392 +/- 876 vs. 3,969 +/- 534 mmHg/min in NP hearts (P < 0.001). The Ca(2+) load required to induce mPTP opening averaged 232 +/- 10 and 128 +/- 16 microM in LP and NP hearts, respectively (P < 0.001). Myocardial malondialdehyde was significantly lower in LP than in NP hearts (P < 0.05). These results suggest that the protection afforded by low-pressure reperfusion involves an inhibition of the opening of the mPTP, possibly via reduction of reactive oxygen species production.  相似文献   

17.
The mechanical resistance of the infarcted left ventricle to rupture, or rupture threshold, was measured by the balloon technique 1-42 days after left anterior descending coronary artery ligation in 70 dogs: 26 without infarction (18 sham, 8 with ligation) and 44 with infarction. Rupture threshold in noninfarcted hearts was higher than in infarcted hearts (1168 +/- 165 (SD) vs. 754 +/- 223 mmHg (1 mmHg = 133.32 Pa), p less than 0.001) and did not change over 6 weeks. In contrast, rupture threshold in infarcted hearts decreased (p less than or equal to 0.05) after 14 days, the average value for 21-42 days being less than that for 1-14 days: 577 +/- 140 vs. 867 +/- 191 mmHg, p less than 0.001. Passive left ventricular stiffness in infarcted hearts was higher than for noninfarcted hearts throughout the 6 weeks during early filling (11.1 +/- 3.9 vs. 7.1 +/- 1.4 mmHg/mL, p less than 0.001) but decreased (p less than or equal to 0.05) after 14 days during the prerupture phase (11.3 +/- 5.3 vs. 6.2 +/- 3.0 mmHg/mL, p less than 0.005). Between 7 and 42 days, the infarct zone showed marked increase in hydroxyproline (10.0 +/- 2.0 vs. 48.8 +/- 19.7 mg/g dry weight, p less than 0.001), shrinkage (infarct size, 25 +/- 9 vs. 9 +/- 5% of the left ventricle, p less than 0.005), and thinning (infarct to normal wall thickness ratio, 0.83 +/- 0.11 vs. 0.51 +/- 0.09, p less than 0.001) but little further stretching (expansion index or the ratio of lengths of infarcted and noninfarcted segments, 1.14 +/- 0.10 vs. 1.28 +/- 0.17, p less than 0.2). A mild decrease (p less than 0.05) in left atrial pressure and increase (p less than 0.05) in diastolic area and fractional change in area (two-dimensional echocardiography) were detected at 6 weeks. The late decrease in rupture threshold and prerupture stiffness of the infarcted left ventricle and thinning of the scar suggest a late decrease in mechanical strength and resistance of the infarcted left ventricle to distension.  相似文献   

18.
To investigate the role of 12-lipoxygenase in preconditioning, we examined whether hearts lacking the "leukocyte-type" 12-lipoxygenase (12-LOKO) would be protected by preconditioning. In hearts from wild-type (WT) and 12-LOKO mice, left ventricular developed pressure (LVDP) and (31)P NMR were monitored during treatment (+/-preconditioning) and during global ischemia and reperfusion. Postischemic function (rate-pressure product, percentage of initial value) measured after 20 min of ischemia and 40 min of reperfusion was significantly improved by preconditioning in WT hearts (78 +/- 12% in preconditioned vs. 44 +/- 7% in nonpreconditioned hearts) but not in 12-LOKO hearts (47 +/- 7% in preconditioned vs. 33 +/- 10% in nonpreconditioned hearts). Postischemic recovery of phosphocreatine was significantly better in WT preconditioned hearts than in 12-LOKO preconditioned hearts. Preconditioning significantly reduced the fall in intracellular pH during sustained ischemia in both WT and 12-LOKO hearts, suggesting that attenuation of the fall in pH during ischemia can be dissociated from preconditioning-induced protection. Necrosis was assessed after 25 min of ischemia and 2 h of reperfusion using 2,3,5-triphenyltetrazolium chloride. In WT hearts, preconditioning significantly reduced the area of necrosis (26 +/- 4%) compared with nonpreconditioned hearts (62 +/- 10%) but not in 12-LOKO hearts (85 +/- 3% in preconditioned vs. 63 +/- 11% in nonpreconditioned hearts). Preconditioning resulted in a significant increase in 12(S)-hydroxyeicosatetraenoic acid in WT but not in 12-LOKO hearts. These data demonstrate that 12-lipoxygenase is important in preconditioning.  相似文献   

19.
The purpose of this study was to evaluate flow heterogeneity and impaired reflow during reperfusion after 60-min global no-flow ischemia in the isolated rabbit heart. Radiolabeled microspheres were used to measure relative flow in small left ventricular (LV) segments in five ischemia + reperfused hearts and in five nonischemic controls. Relative flow heterogeneity was expressed as relative dispersion (RD) and computed as standard deviation/mean. In postischemic vs. preischemic hearts, RD was increased for the whole LV (0.92 +/- 0.41 vs. 0.37 +/- 0.07, P < 0.05) as well as the subendocardium (Endo) and subepicardium considered separately (1.28 +/- 0.74 vs. 0.30 +/- 0.09 and 0.69 +/- 0.22 vs. 0.38 +/- 0.08; P < 0.05 for both comparisons, respectively) during early reperfusion. During late reperfusion, the increased RD for the whole LV and Endo remained significant (0.70 +/- 0.22 vs. 0.37 +/- 0.07 and 1.06 +/- 0.55 vs. 0.30 +/- 0.09; P < 0.05 for both comparisons, respectively). In addition to the increase in postischemic flow heterogeneity, there were some regions demonstrating severely impaired reflow, indicating that regional ischemia can persist despite restoration of normal global flow. Also, the relationship between regional and global flow was altered by the increased postischemic flow heterogeneity, substantially reducing the significance of measured global LV reflow. These observations emphasize the need to quantify regional flow during reperfusion after sustained no-flow ischemia in the isolated rabbit heart.  相似文献   

20.
Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling. Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts. For the in vivo studies, the left anterior descending coronary artery was transiently ligated for 30 min, and the rats were treated for 7 days with CBD (5 mg/kg ip) or vehicle. Cardiac function was studied by echocardiography. Infarcts were examined morphometrically and histologically. For ex vivo evaluation, CBD was administered 24 and 1 h before the animals were killed, and hearts were harvested for physiological measurements. In vivo studies showed preservation of shortening fraction in CBD-treated animals: from 48 +/- 8 to 39 +/- 8% and from 44 +/- 5 to 32 +/- 9% in CBD-treated and control rats, respectively (n = 14, P < 0.05). Infarct size was reduced by 66% in CBD-treated animals, despite nearly identical areas at risk (9.6 +/- 3.9 and 28.2 +/- 7.0% in CBD and controls, respectively, P < 0.001) and granulation tissue proportion as assessed qualitatively. Infarcts in CBD-treated animals were associated with reduced myocardial inflammation and reduced IL-6 levels (254 +/- 22 and 2,812 +/- 500 pg/ml in CBD and control rats, respectively, P < 0.01). In isolated hearts, no significant difference in infarct size, left ventricular developed pressures during ischemia and reperfusion, or coronary flow could be detected between CBD-treated and control hearts. Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo. Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号