首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamine (Gln), glutamate (Glu) and gamma-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocytic-derived glutamine is the precursor of the two most important neurotransmitters: glutamate, an excitatory neurotransmitter, and GABA, an inhibitory neurotransmitter. In addition to their roles in neurotransmission these neurotransmitters act as alternative metabolic substrates that enable metabolic coupling between astrocytes and neurons. The relationships between Gln, Glu and GABA were studied under lead (Pb) toxicity conditions using synaptosomal fractions obtained from adult rat brains to investigate the cause of Pb neurotoxicity-induced seizures. We have found that diminished transport of [(14)C]GABA occurs after Pb treatment. Both uptake and depolarization-evoked release decrease by 40% and 30%, respectively, relative to controls. Lower expression of glutamate decarboxylase (GAD), the GABA synthesizing enzyme, is also observed. In contrast to impaired synaptosomal GABA function, the GABA transporter GAT-1 protein is overexpressed (possibly as a compensative mechanism). Furthermore, similar decreases in synaptosomal uptake of radioactive glutamine and glutamate are observed. However, the K(+)-evoked release of Glu increases by 20% over control values and the quantity of neuronal EAAC1 transporter for glutamate reaches remarkably higher levels after Pb treatment. In addition, Pb induces decreased activity of phosphate-activated glutaminase (PAG), which plays a role in glutamate metabolism. Most noteworthy is that the overexpression and reversed action of the EAAC1 transporter may be the cause of the elevated extracellular glutamate levels. In addition to the impairment of synaptosomal processes of glutamatergic and GABAergic transport, the results indicate perturbed relationships between Gln, Glu and GABA that may be the cause of altered neuronal-astrocytic interactions under conditions of Pb neurotoxicity.  相似文献   

2.
The glutamate (Glu) transporter may modulate cellular glutamine(Gln) metabolism by regulating both the rates of hydrolysis andsubsequent conversion of Glu to -ketoglutarate andNH+4. By delivering Glu, a competitiveinhibitor of Gln for the phosphate-dependent glutaminase (PDG) as wellas an acid-load activator of glutamate dehydrogenase (GDH) flux, thetransporter may effectively substitute extracellularly generated Glufrom the -glutamyltransferase for that derived intracellularly fromGln. We tested this hypothesis in two closely related porcine kidneycell lines, LLC-PK1 and LLC-PK1-F+,the latter selected to grow in the absence of glucose, relying on Glnas their sole energy source. Both cell lines exhibited PDG suppressionas the result of Glu uptake while disrupting the extracellularL-Glu uptake, withD-aspartate-acceleratedintracellular Glu formation coupled primarily to the ammoniagenicpathway (GDH). Conversely, enhancing the extracellular Glu formationwith p-aminohippurate and Glu uptakesuppressed intracellular Gln hydrolysis whileNH+4 formation from Glu increased. Thus theseresults are consistent with the transporter's dual role in modulatingboth PDG and GDH flux. Interestingly, PDG flux was actually higher inthe Gln-adapted LLC-PK1-F+cell line because of a two- to threefold enhancement in Gln uptake despite greater Glu uptake than in the parentalLLC-PK1 cells, revealing theimportance of both Glu and Gln transport in the modulation of PDG flux.Nevertheless, when studied at physiological Gln concentration, PDG fluxfalls under tight Glu transporter control as Gln uptake decreases,suggesting that cellular Gln metabolism may indeed be under Glutransporter control in vivo.

  相似文献   

3.
1. The metabolic fate of infused [1-14C]glutamate was studied in perfused rat liver. The 14C label taken up by the liver was recovered to 85 +/- 2% as 14CO2 and [14C]glutamine. Whereas 14CO2 production accounted for about 70% of the [1-14C]glutamate taken up under conditions of low endogenous rates of glutamine synthesis, stepwise stimulation of glutamine synthesis by NH4Cl increased 14C incorporation into glutamine at the expense of 14CO2 production. Extrapolation to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of vascular glutamate taken up by the liver for glutamine synthesis. This was observed in both, antegrade and retrograde perfusions and suggests an almost exclusive uptake of glutamate into perivenous glutamine-synthetase-containing hepatocytes. 2. Glutamate was simultaneously taken up and released from perfused rat liver. At a near-physiological influent glutamate concentration (0.1 mM), the rates of unidirectional glutamate influx and efflux were similar (about 100 and 120 nmol g-1 min-1, respectively). 3. During infusion of [1-14C]oxoglutarate (50 microM), addition of glutamate (2 mM) did not affect hepatic uptake of [1-14C]oxoglutarate. However, it increased labeled glutamate release from the liver about 10-fold (from 9 +/- 2 to 86 +/- 20 nmol g-1 min-1; n = 4), whereas 14CO2 production from labeled oxoglutarate decreased by about 40%. This suggests not only different mechanisms of oxoglutarate and glutamate transport across the plasma membrane, but also points to a glutamate/glutamate exchange. 4. Oxoglutarate was recently shown to be taken up almost exclusively by perivenous glutamine-synthetase-containing hepatocytes [Stoll, B & H?ussinger, D. (1989) Eur. J. Biochem. 181, 709-716] and [1-14C]oxoglutarate (9 microM) was used to label selectively the intracellular glutamate pool in this perivenous cell population. The specific radioactivity of this intracellular (perivenous) glutamate pool was assessed by measuring the specific radioactivity of newly synthesized glutamine which is continuously released from these cells into the perfusate. Comparison of the specific radioactivities of glutamine and glutamate released from perivenous cells indicates that about 60% of total glutamate release from the liver is derived from the perivenous glutamine-synthetase-containing cell population. Following addition of unlabeled glutamate (0.1 mM), unidirectional glutamate efflux from perivenous cells increased from about 30 to 80 nmol g-1 min-1, whereas glutamate efflux from non-perivenous (presumably periportal) hepatocytes remained largely unaltered (i.e. 20-30 nmol g-1 min-1). 5. It is concluded that, in the intact liver, vascular glutamate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase.  相似文献   

4.
We examined the possibility of quantitative differences in lactate entry into periportal and perivenous hepatocytes under different nutritional states. The rate of14C-L(+)-lactate uptake was determined after 15-second incubations with freshly isolated zonally separated hepatocytes using a centrifuge stop technique at 37 °C and 4 °C, in the presence or absence of either differing amounts of unlabelled lactate or of a hepatocyte lactate transport inhibitor,-cyano-3-hydroxycinnamate. Total entry as well as carrier mediated entry of14C-L(+)-lactate into the isolated cell populations was found to be similar in periportal and perivenous hepatocytes, irrespective of the nutritional state of the animal. Periportal and perivenous hepatocytes showed a greater tendency to transport lactate when isolated from starved animals, in agreement with previously reported data from non-zonally separated isolated hepatocytes. The activity of the hepatocyte plasma-membrane lactate transporter was diminished between fourfold and eightfold in transport studies conducted at 4 °C; similar results were obtained in unseparated and zonally separated suspensions. Temperature dependence of the hepatocyte transporter is markedly less than that reported for the erythrocyte transporter.  相似文献   

5.
Roles of glutamine in neurotransmission   总被引:1,自引:0,他引:1  
Glutamine (Gln) is found abundantly in the central nervous system (CNS) where it participates in a variety of metabolic pathways. Its major role in the brain is that of a precursor of the neurotransmitter amino acids: the excitatory amino acids, glutamate (Glu) and aspartate (Asp), and the inhibitory amino acid, γ-amino butyric acid (GABA). The precursor-product relationship between Gln and Glu/GABA in the brain relates to the intercellular compartmentalization of the Gln/Glu(GABA) cycle (GGC). Gln is synthesized from Glu and ammonia in astrocytes, in a reaction catalyzed by Gln synthetase (GS), which, in the CNS, is almost exclusively located in astrocytes (Martinez-Hernandez et al., 1977). Newly synthesized Gln is transferred to neurons and hydrolyzed by phosphate-activated glutaminase (PAG) to give rise to Glu, a portion of which may be decarboxylated to GABA or transaminated to Asp. There is a rich body of evidence which indicates that a significant proportion of the Glu, Asp and GABA derived from Gln feed the synaptic, neurotransmitter pools of the amino acids. Depolarization-induced-, calcium- and PAG activity-dependent releases of Gln-derived Glu, GABA and Asp have been observed in CNS preparations in vitro and in the brain in situ. Immunocytochemical studies in brain slices have documented Gln transfer from astrocytes to neurons as well as the location of Gln-derived Glu, GABA and Asp in the synaptic terminals. Patch-clamp studies in brain slices and astrocyte/neuron co-cultures have provided functional evidence that uninterrupted Gln synthesis in astrocytes and its transport to neurons, as mediated by specific carriers, promotes glutamatergic and GABA-ergic transmission. Gln entry into the neuronal compartment is facilitated by its abundance in the extracellular spaces relative to other amino acids. Gln also appears to affect neurotransmission directly by interacting with the NMDA class of Glu receptors. Transmission may also be modulated by alterations in cell membrane polarity related to the electrogenic nature of Gln transport or to uncoupled ion conductances in the neuronal or glial cell membranes elicited by Gln transporters. In addition, Gln appears to modulate the synthesis of the gaseous messenger, nitric oxide (NO), by controlling the supply to the cells of its precursor, arginine. Disturbances of Gln metabolism and/or transport contribute to changes in Glu-ergic or GABA-ergic transmission associated with different pathological conditions of the brain, which are best recognized in epilepsy, hepatic encephalopathy and manganese encephalopathy.  相似文献   

6.
Glutamine (Gln) plays an important role in brain energy metabolism and as a precursor for the synthesis of neurotransmitter glutamate and GABA. Previous studies have shown that astrocytic Gln transport is impaired following manganese (Mn) exposure. The present studies were performed to identify the transport routes and the respective Gln transporters contributing to the impairment. Rat neonatal cortical primary astrocytes treated with Mn displayed a significant decrease in Gln uptake mediated by the principle Gln transporting systems, N and ASC. Moreover, systems N, ASC and L were less efficient in Gln export after Mn treatment. Mn treatment caused a significant reduction of both in mRNA expression and protein levels of SNAT3 (system N), SNAT2 (system A) and LAT2 (system L), and lowered the protein but not mRNA expression of ASCT2 (system ASC). Mn exposure did not affect the expression of the less abundant systems N transporter SNAT5 and the system L transporter LAT1, at either the mRNA or protein level. Hence, Mn-induced decrease of inward and outward Gln transport can be largely ascribed to the loss of the specific Gln transporters. Consequently, deregulation of glutamate homeostasis and its diminished availability to neurons may lead to impairment in glutamatergic neurotransmission, a phenomenon characteristic of Mn-induced neurotoxicity.  相似文献   

7.
Gln is transported into rat brain synaptic and non-synaptic mitochondria by a protein catalyzed process. The uptake is significantly higher in synaptic than in non-synaptic mitochondria. The transport is inhibited by the amino acids Glu, Asn and Asp, and by the TCA cycle intermediates succinate, malate and 2-OG. The inhibition by 2-OG is counteracted by AOA and is therefore assumed to be due to transamination of 2-OG, whereby Glu is formed. This presumes that Glu also binds to an inhibitory site on the matrix face of the inner membrane. The transport is complex and cannot be explained by the simple uniport mechanism which has been proposed for renal (Schoolwerth and LaNoue, 1985), and liver mitochondria (Soboll et al., 1991). Thus, Gln transport is stimulated by respiration and by the proton electrochemical gradient. Since it is indicated that both the neutral Gln zwitterion and the Gln anion are transported, there are probably different uptake mechanisms, but not necessarily different carriers. Gln may be transported by an electroneutral mechanism as a proton compensated anion, as well as electrophoretically as a zwitterion with a proton, and probably also by diffusion as a zwitterion. The properties of the brain mitochondrial Gln uptake mechanisms are also not identical with those of a purified renal Gln transporter. It is possible that the Gln transport is controlled by more than one protein, which may be situated on distinct species in a heterogeneous mitochondrial population. Since Gln is assumed to participate in energy production as well as in the synthesis of nucleic acid components and proteins in brain mitochondria, the control of Gln uptake in these organelles may be important.  相似文献   

8.
Müller glial cells from the retina "in situ" and in primary culture, mainly express the high-affinity sodium-coupled glutamate/aspartate transporter GLAST-1, which dominates total retinal glutamate (Glu) uptake, suggesting a major role for these cells in the modulation of excitatory transmission. The possible involvement of ionotropic and metabotropic Glu receptors in the regulation of Glu uptake was studied in primary cultures of Müller glia. We demonstrate that exposure to 1 mM L-Glu induces a time-dependent inhibition of D-aspartate (D-Asp) uptake in a Na+-dependent manner, as a result of a reduction in the number of transporters at the plasma membrane. The inhibition of D-Asp uptake by Glu was not mimicked by agonists or modified by antagonists of ionotropic and metabotropic Glu receptors. In contrast, transport was inhibited by GLAST-1 transportable substrates threo-hydroxyaspartate and aspartate-beta-hydroxamate, but not by the nontransportable inhibitors trans-pyrrolidine dicarboxylate or DL-threo-beta-benzyloxyaspartic acid. Under the same experimental conditions, L-Glu did not affect the sodium-dependent transport systems for glycine or GABA. The present results demonstrate that the specific downregulation of glutamate/aspartate transport by L-Glu is unrelated to Glu receptor activation, and results from the internalization of transporter proteins triggered by the transport process itself. Such negative feedback of Glu on Glu transport, could contribute to retinal toxicity under pathological conditions in which high extracellular concentrations of Glu are reached.  相似文献   

9.
Rat cerebral nonsynaptic mitochondria were incubated in medium containing 2 mM glutamine (Gln) or 2 mM glutamate (Glu), in the presence of a Gln uptake inhibitor histidine (His) as well as other basic amino acids, lysine and arginine (Lys, Arg) not inhibiting Gln uptake. Subsequently, the mitochondrial contents of Glu and Gln were determined by HPLC. Incubation in the presence of Glu alone increased the Glu content from 3.5 to 15 nmol/mg protein, without affecting the Gln content. On the other hand, incubation with Gln increased the content of Gln from 1.5 to 12 nmol/mg, and that of Glu to 10 nmol/mg. As expected, addition of His did not alter the Glu and Gln content resulting from incubation with Glu. However, His significantly decreased to almost the preincubation level the content of Glu in mitochondria incubated with Gln, without affecting the content of Gln. No other amino acid had any effect on these parameters. The results point to the existence of distinct Gln pools, one of which is accessible to external Gln via a His-sensitive transporter and is accessible for deamidation in the mitochondria.Special issue dedicated to Dr. Lawrence F. Eng.  相似文献   

10.
Hepatocyte heterogeneity in glutamate uptake by isolated perfused rat liver   总被引:3,自引:0,他引:3  
Glutamate is simultaneously taken up and released by perfused rat liver, as shown by 14CO2 production from [1-14C]glutamate in the presence of a net glutamate release by the liver, turning to a net glutamate uptake at portal glutamate concentrations above 0.3 mM. 14CO2 production from portal [1-14C]glutamate is decreased by about 60% in the presence of ammonium ions. This effect is not observed during inhibition of glutamine synthetase by methionine sulfoximine. 14CO2 production from [1-14C]glutamate is not influenced by glutamine. Also, when glutamate accumulates intracellularly during the metabolism of glutamine (added at high concentrations, 5 mM), 14CO2 production from [1-14C]glutamate is not affected. If labeled glutamate is generated intracellularly from added [U-14C]proline, stimulation of glutamine synthesis by ammonium ions did not affect 14CO2 production from [U-14C]proline. After induction of a perivenous liver cell necrosis by CCL4, i.e. conditions associated with an almost complete loss of perivenous glutamine synthesis but no effect on periportal urea synthesis, 14CO2 production from [1-14C]glutamate is decreased by about 70%. The results are explained by hepatocyte heterogeneity in glutamate metabolism and indicate a predominant uptake of glutamate (that reaches the liver by the vena portae) by the small perivenous population of glutamine-synthesizing hepatocytes, whereas glutamate production from glutamine or proline is predominantly periportal. In view of the size of the glutamine synthetase-containing hepatocyte pool [Gebhardt, R. and Mecke, D. (1983) EMBO J. 2, 567-570], glutamate transport capacity of these hepatocytes would be about 20-fold higher as compared to other hepatocytes.  相似文献   

11.
Error-free protein biosynthesis is dependent on the reliable charging of each tRNA with its cognate amino acid. Many bacteria, however, lack a glutaminyl-tRNA synthetase. In these organisms, tRNA(Gln) is initially mischarged with glutamate by a non-discriminating glutamyl-tRNA synthetase (ND-GluRS). This enzyme thus charges both tRNA(Glu) and tRNA(Gln) with glutamate. Discriminating GluRS (D-GluRS), found in some bacteria and all eukaryotes, exclusively generates Glu-tRNA(Glu). Here we present the first crystal structure of a non-discriminating GluRS from Thermosynechococcus elongatus (ND-GluRS(Tel)) in complex with glutamate at a resolution of 2.45 A. Structurally, the enzyme shares the overall architecture of the discriminating GluRS from Thermus thermophilus (D-GluRS(Tth)). We confirm experimentally that GluRS(Tel) is non-discriminating and present kinetic parameters for synthesis of Glu-tRNA(Glu) and of Glu-tRNA(Gln). Anticodons of tRNA(Glu) (34C/UUC36) and tRNA(Gln) (34C/UUG36) differ only in base 36. The pyrimidine base of C36 is specifically recognized in D-GluRS(Tth) by the residue Arg358. In ND-GluRS(Tel) this arginine residue is replaced by glycine (Gly366) presumably allowing both cytosine and the bulkier purine base G36 of tRNA(Gln) to be tolerated. Most other ND-GluRS share this structural feature, leading to relaxed substrate specificity.  相似文献   

12.
Biliary epithelial cells (BEC) were isolated from normal rat liver with high purity (> 95%) as revealed by morphological criteria as well as staining for gamma-glutamyl transferase and cytokeratin 19. During cultivation for 96 hr flattening of the cells and a loss of microvilli was apparent, while the cytokeratin 19-positive phenotype was maintained. The BEC contained a sodium-dependent as well as a sodium-independent uptake system for glutamate with high capacity. Both activities increased transiently during cultivation peaking after 72 and 48 hr, respectively. After 72 hr, apparent kinetic constants could be calculated for the sodium dependent (Km = 13.6 mM; Vmax = 388 nmoles/min/mg protein) and for the sodium-independent system. (Km = 10.8 mM; Vmax = 132 nmoles/min/mg protein). The transient increase of both transport systems was suppressed by dexamethasone. The sodium-dependence showed a threshold concentration of about 35 mM sodium. Inhibition by kainate was much less potent for BEC than for hepatocytes. These data indicate that BEC contain transport systems for glutamate different from those in hepatocytes and which may be involved in the intrahepatic reabsorbtion of glutamate from bile.Abbreviations BEC biliary epithelial cells - DMEM Dulbecco's Modified Eagle's Medium - GGT gamma-glutamyl transferase - Dex dexamethasone - Glu glutamate - N-Me-AIB N-methyl-aminoisobutyrate - Hep hepatocytes - FBS Fetal bovine serum  相似文献   

13.
The transport of alanine by system A is an important source of carbons for the synthesis of glucose in the liver. Here, we show that the mRNA encoding the ubiquitously expressed isoform of the rat system A transporter (SAT2) is dramatically increased in liver following streptozotocin-induced diabetes. This increase in SAT2 mRNA is intensified in the gluconeogenic periportal hepatocytes and also in hepatocytes surrounding the central vein. SAT3, the more abundant system A mRNA isoform present in liver, is restricted to perivenous hepatocytes and is also increased following this treatment but to a much lesser extent than SAT2 mRNA. SN1, an abundant system N mRNA isoform expressed in both perivenous and periportal hepatocytes, is not affected by streptozotocin treatment. A pharmacological dose of glucagon also increased both SAT2 and SAT3 mRNA levels in liver while SN1 mRNA levels remained unaffected. These results indicate that the increase in system A activity observed in liver following experimentally induced diabetes or glucagon treatment is due to the selective increase in mRNAs encoding system A transporters.  相似文献   

14.
Summary Livers of starved (48 hr) male Wistar rats were perfused in a non recirculating manner with a near physiological mix of ammonium, lactate, ornithine and pyruvate in Krebs buffer. The addition of ketone bodies (3-DL-hydroxybutyrate [B OHB] 2–30 mM or lithium-acetoacetate (15 mM) to the perfusate resulted in a rapid rise in the efflux of glutamate from the liver (five times above basal). This was not seen with control solutions (sodium chloride or lithium chloride). The increased efflux was sustained for the duration of the addition of the ketone bodies (7 min), was rapidly reversible and dose dependant. Glutamine export rates were not altered, suggesting that either the glutamate originated from cells not responsible for glutamine synthesis or that this glutamate was superfulous to the requirement of glutamine synthesis. There was no evidence that the lactate transporter was involved in the entry of lactate into perivenous hepatocytes for glutamine synthesis; lactate presumably entering the hepatocyte by an alternative pathway, probably nonionic diffusion.  相似文献   

15.
Hepatic transport and metabolism of glutamate and glutamine are regulated by intervention of several proteins. Glutamine is taken up by periportal hepatocytes and is the major source of ammonia for urea synthesis and glutamate for N-acetylglutamate (NAG) synthesis, which is catalyzed by the N-acetylglutamate synthase (NAGS). Glutamate is taken up by perivenous hepatocytes and is the main source for the synthesis of glutamine, catalyzed by glutamine synthase (GS). Accumulation of glutamate and ammonia is a common feature of chronic liver failure, but mechanism that leads to failure of the urea cycle in this setting is unknown. The Farnesoid X Receptor (FXR) is a bile acid sensor in hepatocytes. Here, we have investigated its role in the regulation of the metabolism of both glutamine and glutamate. In vitro studies in primary cultures of hepatocytes from wild type and FXR(-/-) mice and HepG2 cells, and in vivo studies, in FXR(-/-) mice as well as in a rodent model of hepatic liver failure induced by carbon tetrachloride (CCl(4)), demonstrate a role for FXR in regulating this metabolism. Further on, promoter analysis studies demonstrate that both human and mouse NAGS promoters contain a putative FXRE, an ER8 sequence. EMSA, ChIP and luciferase experiments carried out to investigate the functionality of this sequence demonstrate that FXR is essential to induce the expression of NAGS. In conclusion, FXR activation regulates glutamine and glutamate metabolism and FXR ligands might have utility in the treatment of hyperammonemia states.  相似文献   

16.
Cancer influences hepatic amino acid metabolism in the host. To further investigate this relationship, the effects of an implanted fibrosarcoma on specific amino acid transport activities were measured in periportal (PP)- and perivenous (PV)-enriched rat hepatocyte populations. Na(+)-dependent glutamate transport rates were eightfold higher in PV than in PP preparations but were relatively unaffected during tumor growth. System N-mediated glutamine uptake was 75% higher in PV than in PP preparations and was stimulated up to twofold in both regions by tumor burdens of 9 +/- 4% of carcass weight compared with hepatocytes from pair-fed control animals. Excessive tumor burdens (26 +/- 7%) resulted in hypophagia, loss of PV-enriched system N activities, and reduced transporter stimulation. Conversely, saturable arginine uptake was enhanced fourfold in PP preparations and was induced twofold only after excessive tumor burden. These data suggest that hepatic amino acid transporters are differentially influenced by cancer in a spatial and temporal manner, and they represent the first report of reciprocal zonal enrichment of system N and saturable arginine uptake in the mammalian liver.  相似文献   

17.
Manganese (Mn) has been implicated in the impairment of the glutamate-glutamine cycling (GGC) by deregulation of Glu and glutamine (Gln) turnover in astrocytes. Here, we have examined possible mechanisms involved in the Mn(II)-mediated disruption of Glu turnover, including those related to protein degradation, such as the proteasomal and lysosomal machinery. Our study revealed that lysosome but not proteasomal inhibition is responsible for down-regulation of the Glu transporter after Mn(II) treatment. Because protein kinase C (PKC) activation leads to the down-regulation of Glu carriers, and Mn(II) increases PKC activity, we hypothesized that the PKC signaling contributes to the Mn(II)-mediated disruption of Glu turnover. Our results show that PKC activation causes a decrease in Glu uptake and that inhibition of PKC reverses Mn(II)-dependent down-regulation of Glu influx as well as glutamate transporter 1 (GLT1) and glutamate-aspartate transporter (GLAST) protein level. Co-immunoprecipitation studies show association of GLT1 with the PKCδ and PKCα isoforms and Mn(II)-induced specific increase in PKCδ-GLT1 interaction. In addition, astrocytes transfected with shRNA against PKCδ show decreased sensitivity to Mn(II) compared with those transfected with control shRNA or shRNA targeted against PKCα. Taken together, these findings demonstrate that PKCδ signaling is involved in the Mn(II)-induced deregulation of Glu turnover in astrocytes.  相似文献   

18.
Intravenous infusion of dexamethasone (Dex) in the fetal lamb causes a two- to threefold increase in plasma glutamine and other glucogenic amino acids and a decrease of plasma glutamate to approximately one-third of normal. To explore the underlying mechanisms, hepatic amino acid uptake and conversion of L-[1-(13)C]glutamine to L-[1-(13)C]glutamate and (13)CO(2) were measured in six sheep fetuses before and in the last 2 h of a 26-h Dex infusion. Dex decreased hepatic glutamine and alanine uptakes (P < 0.01) and hepatic glutamate output (P < 0.001). Hepatic outputs of the glutamate (R(Glu,Gln)) and CO(2) formed from plasma glutamine decreased to 21 (P < 0.001) and 53% (P = 0.009) of control, respectively. R(Glu,Gln), expressed as a fraction of both outputs, decreased (P < 0.001) from 0.36 +/- 0.02 to 0.18 +/- 0.04. Hepatic glucose output remained virtually zero throughout the experiment. We conclude that Dex decreases fetal hepatic glutamate output by increasing the routing of glutamate carbon into the citric acid cycle and by decreasing the hepatic uptake of glucogenic amino acids.  相似文献   

19.
Using a gastrostomy-fed (GF) rat infant "pup-in-a-cup" model, the effects of protein deprivation and supplemental glutamine (Gln) and glutamate (Glu) were examined to test the hypothesis that Gln decreases the proinflammatory response induced by LPS in the developing infant rat small intestine. Four groups of 6- to 7-day-old pups were fed a rat milk substitute (RMS), one providing 100% and three providing 25% of normal protein intake for another 6 days. Two of the 25% protein-fed groups received supplemental Gln or Glu. GF and LPS treatment blunted body growth and intestinal villus height and increased intestinal cytokine-induced neutrophil chemoattractant (CINC) mRNA in the protein-deprived, non-Gln-treated group compared with mother-fed pups (P < 0.05). Gln blunted intestinal CINC mRNA (P < 0.05), but Glu did not. Intestinal CINC peptide in the LPS-treated pups provided 100 and 25% protein was elevated approximately 13-fold compared with the mother-reared pups (P < 0.001). Gln and Glu decreased intestinal CINC peptide by 73 and 80%, respectively. GF, LPS-treated pups also had a higher level of plasma CINC peptide (P < 0.05). Gln but not Glu decreased plasma CINC peptide (P < 0.05). An approximate sixfold elevation of intestinal MPO activity in the GF, LPS-treated rats was decreased by Gln and Glu by 92% (P < 0.001) and 54% (P < 0.05), respectively. Intestinal and plasma TNF-alpha were increased in GF, LPS-treated pups (P < 0.01), and Gln and Glu both blunted this increase (P < 0.05) in the intestine but not in the plasma. The results indicate that Gln decreases the LPS-induced inflammatory response in infant rat intestine under different conditions of protein intake.  相似文献   

20.
OAT (organic anion transporter) 2 [human gene symbol SLC22A7 (SLC is solute carrier)] is a member of the SLC22 family of transport proteins. In the rat, the principal site of expression of OAT2 is the sinusoidal membrane domain of hepatocytes. The particular physiological function of OAT2 in liver has been unresolved so far. In the present paper, we have used the strategy of LC (liquid chromatography)-MS difference shading to search for specific and cross-species substrates of OAT2. Heterologous expression of human and rat OAT2 in HEK (human embryonic kidney)-293 cells stimulated accumulation of the zwitterion trigonelline; subsequently, orotic acid was identified as an excellent and specific substrate of OAT2 from the rat (clearance=106 μl·min?1·mg of protein?1) and human (46 μl·min?1·mg of protein?1). The force driving uptake of orotic acid was identified as glutamate antiport. Efficient transport of glutamate by OAT2 was directly demonstrated by uptake of [3H]glutamate. However, because of high intracellular glutamate, OAT2 operates as glutamate efflux transporter. Thus expression of OAT2 markedly increased the release of glutamate (measured by LC-MS) from cells, even without extracellular exchange substrate. Orotic acid strongly trans-stimulated efflux of glutamate. We thus propose that OAT2 physiologically functions as glutamate efflux transporter. OAT2 mRNA was detected, after laser capture microdissection of rat liver slices, equally in periportal and pericentral regions; previous reports of hepatic release of glutamate into blood can now be explained by OAT2 activity. A specific OAT2 inhibitor could, by lowering plasma glutamate and thus promoting brain-to-blood efflux of glutamate, alleviate glutamate exotoxicity in acute brain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号