首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Succession of ecotypes, physiologically diverse strains with negligible rRNA sequence divergence, may explain the dominance of small, red-pigmented (phycoerythrin-rich) cyanobacteria in the autotrophic picoplankton of deep lakes (C. Postius and A. Ernst, Arch. Microbiol. 172:69-75, 1999). In order to test this hypothesis, it is necessary to determine the abundance of specific ecotypes or genotypes in a mixed background of phylogenetically similar organisms. In this study, we examined the performance of Taq nuclease assays (TNAs), PCR-based assays in which the amount of an amplicon is monitored by hydrolysis of a labeled oligonucleotide (TaqMan probe) when hybridized to the amplicon. High accuracy and a 7-order detection range made the real-time TNA superior to the corresponding end point technique. However, in samples containing mixtures of homologous target sequences, quantification can be biased due to limited specificity of PCR primers and probe oligonucleotides and due to accumulation of amplicons that are not detected by the TaqMan probe. A decrease in reaction efficiency, which can be recognized by direct monitoring of amplification, provides experimental evidence for the presence of such a problem and emphasizes the need for real-time technology in quantitative PCR. Use of specific primers and probes and control of amplification efficiency allow correct quantification of target DNA in the presence of an up to 10(4)-fold excess of phylogenetically similar DNA and of an up to 10(7)-fold excess of dissimilar DNA.  相似文献   

2.
Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.  相似文献   

3.
Abstract

TaqMan real-time quantitative PCR assays were developed for the accurate detection and quantification of DNA from Fusarium poae and F. graminearum species, which are able to produce trichothecenes. These and other PCR assays were used for the quantification of trichothecene-producing Fusarium fungi in cereal grains. A correlation was found between the levels of F. poae DNA and nivalenol and enniatins in barley and between the levels of F. graminearum DNA and deoxynivalenol in oats. The correlations between F. poae DNA and nivalenol and F. graminearum DNA and deoxynivalenol levels were higher than those between these mycotoxins and morphologically determined F. poae and F. graminearum/F. culmorum contamination levels. The use of F. poae specific primers and probe together with F. sporotrichioides/F. langsethiae specific primers and probe in a multiplex qPCR assay yielded results in accordance with those obtained using these primers and probes separately.  相似文献   

4.
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5′-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.  相似文献   

5.
Polymerase chain reaction (PCR) is a sensitive and rapid method for the diagnosis of canine Leishmania infection and can be performed on a variety of biological samples, including peripheral blood, lymph node, bone marrow and skin. Standard PCR requires electrophoretic analysis of the amplification products and is usually not suitable for quantification of the template DNA (unless competitor-based or other methods are developed), being of reduced usefulness when accurate monitoring of target DNA is required. Quantitative real-time PCR allows the continuous monitoring of the accumulation of PCR products during the amplification reaction. This allows the identification of the cycle of near-logarithmic PCR product generation (threshold cycle) and, by inference, the relative quantification of the template DNA present at the start of the reaction. Since the amplification product are monitored in "real-time" as they form cycle-by-cycle, no post-amplification handling is required. The absolute quantification is performed according either to an internal standard co-amplified with the sample DNA, or to an external standard curve obtained by parallel amplification of serial known concentrations of a reference DNA sequence. From the quantification of the template DNA, an estimation of the relative load of parasites in the different samples can be obtained. The advantages compared to standard and semi-quantitative PCR techniques are reduction of the assay's time and contamination risks, and improved sensitivity. As for standard PCR, the minimal components of the quantitative PCR reaction mixture are the DNA target of the amplification, an oligonucleotide primer pair flanking the target sequence, a suitable DNA polymerase, deoxynucleotides, buffer and salts. Different technologies have been set up for the monitoring of amplification products, generally based on the use of fluorescent probes. For instance, SYBR Green technology is a non-specific detection system based on a fluorescent dsDNA intercalator and it is applicable to all potential targets. TaqMan technology is more specific since performs the direct assessment of the amount of amplified DNA using a fluorescent probe specific for the target sequence flanked by the primer pair. This probe is an oligonucleotide labelled with a reporter dye (fluorescent) and a quencher (which absorbs the fluorescent signal generated by the reporter). The thermic protocol of amplification allows the binding of the fluorescent probe to the target sequence before the binding of the primers and the starting of the polymerization by Taq polymerase. During polymerization, 5'-3' exonuclease activity of Taq polymerase digests the probe and in this way the reporter dye is released from the probe and a fluorescent signal is detected. The intensity of the signal accumulates at the end of each cycle and is related to the amount of the amplification product. In recent years, quantitative PCR methods based either on SYBR Green or TaqMan technology have been set up for the quantification of Leishmania in mouse liver, mouse skin and human peripheral blood, targeting either single-copy chromosomal or multi-copy minicircle sequences with high sensitivity and reproducibility. In particular, real-time PCR seems to be a reliable, rapid and noninvasive method for the diagnosis and follow up of visceral leishmaniasis in humans. At present, the application of real-time PCR for research and clinical diagnosis of Leishmania infection in dogs is still foreseable. As for standard PCR, the high sensitivity of real-time PCR could allow the use of blood sampling that is less invasive and easily performed for monitoring the status of the dogs. The development of a real-time PCR assay for Leishmania infantum infection in dogs could support the standard and optimized serological and PCR methods currenly in use for the diagnosis and follow-up of canine leishmaniasis, and perhaps prediction of recurrences associated with tissue loads of residual pathogens after treatment. At this regard, a TaqMan Real Time PCR method developed for the quantification of Leishmania infantum minicircle DNA in peripheral blood of naturally infected dogs sampled before and at different time points after the beginning of a standard antileishmanial therapy will be illustrated.  相似文献   

6.
Multiplex polymerase chain reaction (PCR), the amplification of multiple targets in a single reaction, presents a new set of challenges that further complicate more traditional PCR setups. These complications include a greater probability for nonspecific amplicon formation and for imbalanced amplification of different targets, each of which can compromise quantification and detection of multiple targets. Despite these difficulties, multiplex PCR is frequently used in applications such as pathogen detection, RNA quantification, mutation analysis, and (recently) next generation DNA sequencing. Here we investigated the utility of primers with one or two thermolabile 4-oxo-1-pentyl phosphotriester modifications in improving multiplex PCR performance. Initial endpoint and real-time analyses revealed a decrease in off-target amplification and a subsequent increase in amplicon yield. Furthermore, the use of modified primers in multiplex setups revealed a greater limit of detection and more uniform amplification of each target as compared with unmodified primers. Overall, the thermolabile modified primers present a novel and exciting avenue for improving multiplex PCR performance.  相似文献   

7.
A novel signal generation principle suitable for real time and end-point detection of specific PCR products in a closed tube is described. Linear DNA probes were labeled at their 5′-ends with a stable, fluorescent terbium chelate. The fluorescence intensity of this chelate is lower when it is coupled to single-stranded DNA than when the chelate is free in solution. The synthesized probes were used in the real time monitoring of PCR using a prototype instrument that consisted of a fluorometer coupled to a thermal cycler. When the probe anneals to a complementary target amplicon, the 5′→3′ exonucleolytic activity of DNA polymerase detaches the label from the probe. This results in an enhanced terbium fluorescence signal. Since terbium has a long excited state lifetime, its fluorescence can be measured in a time-resolved manner, which results in a low background fluorescence and a 1000-fold signal amplification. The detection method is quantitative over an extremely wide linear range (at least 10–107 initial template molecules). The label strategy can easily be combined with existing label technologies, such as TaqMan 5′-exonuclease assays, in order to carry out multiplex assays that do not suffer from overlapping emission peaks of the fluorophores.  相似文献   

8.
The evolution of fungicide resistance within populations of plant pathogens must be monitored to develop management strategies. Such monitoring often is based on microbiological tests, such as microtiter plate assays. Molecular monitoring methods can be considered if the mutations responsible for resistance have been identified. Allele-specific real-time PCR approaches, such as amplification refractory mutation system (ARMS) PCR and mismatch amplification mutation assay (MAMA) PCR, are, despite their moderate efficacy, among the most precise methods for refining SNP quantification. We describe here a new real-time PCR method, the allele-specific probe and primer amplification assay (ASPPAA PCR). This method makes use of mixtures of allele-specific minor groove binder (MGB) TaqMan probes and allele-specific primers for the fine quantification of SNPs from a pool of DNA extracted from a mixture of conidia. It was developed for a single-nucleotide polymorphism (SNP) that is responsible for resistance to the sterol biosynthesis inhibitor fungicide fenhexamid, resulting in the replacement of the phenylalanine residue (encoded by the TTC codon) in position 412 of the enzymatic target (3-ketoreductase) by a serine (TCC), valine (GTC), or isoleucine (ATC) residue. The levels of nonspecific amplification with the ASPPAA PCR were reduced at least four times below the level of currently available allele-specific real-time PCR approaches due to strong allele specificity in amplification cycles, including two allele selectors. This new method can be used to quantify a complex quadriallelic SNP in a DNA pool with a false discovery rate of less than 1%.  相似文献   

9.
Listeriosis is a serious food-borne infection with mortality rates approaching 30%. Therefore, the rapid, cost-effective, and automated detection of Listeria monocytogenes throughout the food chain continues to be a major concern. Here we describe three novel quantitative real-time PCR assays for L. monocytogenes based on amplification of a target hlyA gene with SYBR Green I chemistry and hydrolysis probe (TaqMan MGB probe). In order to offer sensitive, rapid and robust tool of additional economical value the real-time PCR assays were designed and optimized to only 5 μl-reactions. All assays were evaluated by using different non-reference Listeria strains isolated from various food matrices. Results demonstrated specificity to L. monocytogenes with accurate quantification over a dynamic range of 5-6 log units with R2 higher than 0.98 and amplification efficiencies reaching above 92%. The detection and quantification limits were as low as 165 genome equivalents. Comparison of novel assays to commercially available TaqMan® Listeria monocytogenes Detection Kit and previously published studies revealed similar specificity, sensitivity and efficiency, but greater robustness and especially cost-efficiency in the view of smaller reaction volumes and continuous increase in sample throughput.  相似文献   

10.
We compared three sets of oligonucleotide primers and two probes designed for Vibrio vulnificus hemolysin A gene (vvhA) for TaqMan-based real-time PCR method enabling specific detection of Vibrio vulnificus in oysters. Two of three sets of primers with a probe were specific for the detection of all 81 V. vulnificus isolates by TaqMan PCR. The 25 nonvibrio and 12 other vibrio isolates tested were negative. However, the third set of primers, F-vvh1059 and R-vvh1159, with the P-vvh1109 probe, although positive for all V. vulnificus isolates, also exhibited positive cycle threshold (CT) values for other Vibrio spp. Optimization of the TaqMan PCR assay using F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and the P-vvh874 probe detected 1 pg of purified DNA and 103 V. vulnificus CFU/ml in pure cultures. The enriched oyster tissue homogenate did not exhibit detectable inhibition to the TaqMan PCR amplification of vvhA. Detection of 3 × 103 CFU V. vulnificus, resulting from a 5-h enrichment of an initial inoculum of 1 CFU/g of oyster tissue homogenate, was achieved with F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and P-vvh875 probe. The application of the TaqMan PCR using these primers and probe, exhibited detection of V. vulnificus on 5-h-enriched natural oysters harvested from the Gulf of Mexico. Selection of appropriate primers and a probe on vvhA for TaqMan-PCR-based detection of V. vulnificus in post-harvest-treated oysters would help avoid false-positive results, thus ensuring a steady supply of safe oysters to consumers and reducing V. vulnificus-related illnesses and deaths.  相似文献   

11.
Real-time RT-PCR has been used widely, both in fundamental research and in clinical diagnostics, for instance for quantification of RNA levels in human tissues and tissue biopsies. In the present study we provide a strategy to validate primers/probes for real-time RT-PCR quantification of baboon samples. The method is based on the TaqMan system and uses primers/probes that have been designed and validated for human real-time RT-PCR. A prerequisite for the accuracy of this strategy is a similar amplification efficiency between human and baboon PCR reactions. We propose two different methods, i.e. by calculating PCR efficiencies from the slope of a dilution curve or by using the linear regression method, to compare the amplification efficiency between human and baboon samples. In conclusion, by performing a simple validation experiment, real-time PCR assays based on human sequences, which are easily available, can be applied for analysis of baboon samples.  相似文献   

12.
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches-SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)-were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.  相似文献   

13.
Selective amplification in PCR is principally determined by the sequence of the primers and the temperature of the annealing step. We have developed a new PCR technique for distinguishing related sequences in which additional selectivity is dependent on sequences within the amplicon. A 5′ extension is included in one (or both) primer(s) that corresponds to sequences within one of the related amplicons. After copying and incorporation into the PCR product this sequence is then able to loop back, anneal to the internal sequences and prime to form a hairpin structure—this structure is then refractory to further amplification. Thus, amplification of sequences containing a perfect match to the 5′ extension is suppressed while amplification of sequences containing mismatches or lacking the sequence is unaffected. We have applied Headloop PCR to DNA that had been bisulphite-treated for the selective amplification of methylated sequences of the human GSTP1 gene in the presence of up to a 105-fold excess of unmethylated sequences. Headloop PCR has a potential for clinical application in the detection of differently methylated DNAs following bisulphite treatment as well as for selective amplification of sequence variants or mutants in the presence of an excess of closely related DNA sequences.  相似文献   

14.
Quantitative real-time PCR (qPCR) commonly uses the fluorogenic 5′ nuclease (TaqMan) and SYBR Green I (SG) detection chemistries to enumerate biomarker genes. Dehalococcoides (Dhc) are keystone bacteria for the detoxification of chlorinated ethenes, and the Dhc 16S ribosomal RNA (rRNA) gene serves as a biomarker for monitoring reductive dechlorination in contaminated aquifers. qPCR enumeration of Dhc biomarker genes using the TaqMan or SG approach with the same primer set yielded linear calibration curves over a seven orders of magnitude range with similar amplification efficiencies. The TaqMan assay discriminates specific from nonspecific amplification observed at low template concentrations with the SG assay, and had a 10-fold lower limit of detection of ~3 copies per assay. When applied to Dhc pure cultures and Dhc-containing consortia, both detection methods enumerated Dhc biomarker genes with differences not exceeding 3-fold. Greater variability was observed with groundwater samples, and the SG chemistry produced false-positive results or yielded up to 6-fold higher biomarker gene abundances compared to the TaqMan method. In most cases, the apparent error associated with SG detection resulted from quantification of nonspecific amplification products and was more pronounced with groundwater samples that had low biomarker concentrations or contained PCR inhibitors. Correction of the apparent error using post-amplification melting curve analysis produced 2 to 21-fold lower abundance estimates; however, gel electrophoretic analysis of amplicons demonstrated that melting curve analysis was insufficient to recognize all nonspecific amplification. Upon exclusion of nonspecific amplification products identified by combined melting curve and electrophoretic amplicon analyses, the SG method produced false-negative results compared to the TaqMan method. To achieve sensitive and accurate quantification of Dhc biomarker genes in environmental samples (e.g., groundwater) and avoid erroneous conclusions, the analysis should rely on TaqMan detection chemistry, unless additional analyses validate the results obtained with the SG approach.  相似文献   

15.
A real-time PCR method was developed to detect monodon baculovirus (MBV) in penaeid shrimp. A pair of MBV primers to amplify a 135 bp DNA fragment and a TaqMan probe were developed. The primers and TaqMan probe were specific for MBV and did not cross react with Hepatopancreatic parvovirus (HPV), White spot syndrome virus (WSSV), Infectious hypodermal and haematopoietic virus (IHHNV) and specific pathogen free (SPF) shrimp DNA. A plasmid (pMBV) containing the target MBV sequence was constructed and used for determination of the sensitivity of the real-time PCR. This real-time PCR assay had a detection limit of one plasmid MBV DNA copy. Most significantly, this real-time PCR method can detect MBV positive samples from different geographic locations in the University of Arizona collection, including Thailand and Indonesia collected over a 13-year period.  相似文献   

16.
To overcome the disadvantages of two-round nested PCR, we developed a simple and robust closed single-tube nested PCR method (antisense PCR). The method uses antisense oligonucleotides that carry a 5′ tag and that can potentially hybridize to the 3′ ends of the outer primers, depending on the annealing temperature. During initial cycles, which are performed at a high annealing temperature, the antisense oligonucleotides do not hybridize and amplification is directed by the outer primers. During later cycles, for which the annealing temperature is decreased, the outer primers hybridize to the antisense oligonucleotides, extend to produce sequences that are mismatched to the amplicon templates, and consequently become inactivated, whereas the inner primers hybridize to the amplicon templates and continue amplification. Antisense quantitative PCR (qPCR) was compared with one-round qPCR for real-time amplification of four PCR targets (BCR, APC, N-RAS, and a rearranged IGH gene). It had equal amplification efficiency but produced much less nonspecific amplification. Antisense PCR enables both endpoint detection and real-time quantification. It can substitute for two-round nested PCRs but may also be applicable to instances of one-round PCR in which nonspecificity is a problem.  相似文献   

17.
Insulated isothermal PCR (iiPCR), established on the basis of Ralyeigh-Bénard convection, is a rapid and low-cost platform for nucleic acid amplification. However, the method used for signal detection, namely gel electrophoresis, has limited the application of iiPCR. In this study, TaqMan probe-based iiPCR system was developed to obviate the need of post-amplification processing. This system includes an optical detection module, which was designed and integrated into the iiPCR device to detect fluorescent signals generated by the probe. TaqMan probe-iiPCR assays targeting white spot syndrome virus (WSSV) and infectious myonecrosis virus were developed for preliminary evaluation of this system. Significant elevation of fluorescent signals was detected consistently among positive iiPCR reactions in both assays, correlating with amplicon detection by gel electrophoresis analysis. After condition optimization, a threshold value of S/N (fluorescent intensityafter/fluorescent intensitybefore) for positive reactions was defined for WSSV TaqMan probe-iiPCR on the basis of 20 blank reactions. WSSV TaqMan probe-iiPCR generated positive S/Ns from as low as 101 copies of standard DNA and lightly infected Litopenaeus vannamei. Compared with an OIE-certified nested PCR, WSSV TaqMan probe-iiPCR showed a sensitivity of 100% and a specificity of 96.67% in 120 WSSV-free or lightly infected shrimp samples. Generating positive signals specifically and sensitively, TaqMan probe-iiPCR system has a potential as a low-cost and rapid on-site diagnostics method.  相似文献   

18.
Recently much attention has been focused on single nucleotide polymorphisms (SNPs) within fundamentally important genes, such as those involved in metabolism, cell growth regulation, and other disease-associated genes. Methodologies for discriminating different alleles need to be specific (robust detection of an altered sequence in the presence of wild-type DNA) and preferably, amenable to high throughput screening. We have combined the fluorogenic 5' nuclease polymerase chain reaction (TaqMan) and the mismatch amplification mutation assay (MAMA) to form a novel assay, TaqMAMA, that can quickly and specifically detect single base changes in genomic DNA. TaqMan chemistry utilizes fluorescence detection during PCR to precisely measure the starting template concentration, while the MAMA assay exploits mismatched bases between the PCR primers and the wild-type template to selectively amplify specific mutant or polymorphic sequences. By combining these assays, the amplification of the mutant DNA can be readily detected by fluorescence in a single PCR reaction in 2 hours. Using the human TK6 cell line and specific HPRT-mutant clones as a model system, we have optimized the TaqMAMA technique to discriminate between mutant and wild-type DNA. Here we demonstrate that appropriately designed MAMA primer pairs preferentially amplify mutant genomic DNA even in the presence of a 1,000-fold excess of wild-type DNA. The ability to selectively amplify DNAs with single nucleotide changes, or the specific amplification of a low copy number mutant DNA in a 1,000-fold excess of wild-type DNA, is certain to be a valuable technique for applications such as allelic discrimination, detection of single nucleotide polymorphisms or gene isoforms, and for assessing hotspot mutations in tumor-associated genes from biopsies contaminated with normal tissue.  相似文献   

19.
We compared three sets of oligonucleotide primers and two probes designed for Vibrio vulnificus hemolysin A gene (vvhA) for TaqMan-based real-time PCR method enabling specific detection of Vibrio vulnificus in oysters. Two of three sets of primers with a probe were specific for the detection of all 81 V. vulnificus isolates by TaqMan PCR. The 25 nonvibrio and 12 other vibrio isolates tested were negative. However, the third set of primers, F-vvh1059 and R-vvh1159, with the P-vvh1109 probe, although positive for all V. vulnificus isolates, also exhibited positive cycle threshold (C(T)) values for other Vibrio spp. Optimization of the TaqMan PCR assay using F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and the P-vvh874 probe detected 1 pg of purified DNA and 10(3) V. vulnificus CFU/ml in pure cultures. The enriched oyster tissue homogenate did not exhibit detectable inhibition to the TaqMan PCR amplification of vvhA. Detection of 3 x 10(3) CFU V. vulnificus, resulting from a 5-h enrichment of an initial inoculum of 1 CFU/g of oyster tissue homogenate, was achieved with F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and P-vvh875 probe. The application of the TaqMan PCR using these primers and probe, exhibited detection of V. vulnificus on 5-h-enriched natural oysters harvested from the Gulf of Mexico. Selection of appropriate primers and a probe on vvhA for TaqMan-PCR-based detection of V. vulnificus in post-harvest-treated oysters would help avoid false-positive results, thus ensuring a steady supply of safe oysters to consumers and reducing V. vulnificus-related illnesses and deaths.  相似文献   

20.
An enhanced polymerase chain reaction (PCR) assay to detect the coronavirus associated with severe acute respiratory syndrome (SARS-CoV) was developed in which a target gene pre-amplification step preceded TaqMan real-time fluorescent PCR. Clinical samples were collected from 120 patients diagnosed as suspected or probable SARS cases and analyzed by conventional PCR followed by agarose gel electrophoresis, conventional TaqMan real-time PCR, and our enhanced TaqMan real-time PCR assays. An amplicon of the size expected from SARS-CoV was obtained from 28/120 samples using the enhanced real-time PCR method. Conventional PCR and real-time PCR alone identified fewer SARS-CoV positive cases. Results were confirmed by viral culture in 3/28 cases. The limit of detection of the enhanced real-time PCR method was 10(2)-fold higher than the standard real-time PCR assay and 10(7)-fold higher than conventional PCR methods. The increased sensitivity of the assay may help control the spread of the disease during future SARS outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号