首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim In order to resolve disputed biogeographical histories of biota with Gondwanan continental distributions, and to assess the null hypothesis of vicariance, it is imperative that a robust geological time‐frame be established. As an example, the sudden and coincident appearance of hystricognath rodents (Rodentia: Hystricognathi) on both the African and South American continents has been an irreconcilable controversy for evolutionary biologists, presenting enigmas for both Gondwanan vicariance and Late Eocene dispersal hypotheses. In an attempt to resolve this discordance, we aim to provide a more robust phylogenetic hypothesis and improve divergence‐date estimates, which are essential to assessing the null hypothesis of vicariance biogeography. Location The primary centres of distribution are in Africa and South America. Methods We implemented parsimony, maximum‐likelihood and Bayesian methods to generate a phylogeny of 37 hystricognath taxa, the most comprehensive taxonomic sampling of this group to date, on the basis of two nuclear gene regions. To increase phylogenetic resolution at the basal nodes, these data were combined with previously published data for six additional nuclear gene regions. Divergence dates were estimated using two relaxed‐molecular‐clock methods, Bayesian multidivtime and nonparametric rate smoothing. Results Our data do not support reciprocal monophyly of African and South American lineages. Indeed, Old World porcupines (i.e. Hystricomorpha) appear to be more closely related to New World lineages (i.e. Caviomorpha) than to other Old World families (i.e. Bathyergidae, Petromuridae and Thryonomyidae). The divergence between the monophyletic assemblage of South American lineages and its Old World ancestor was estimated to have occurred c. 50 Ma. Main conclusions Our phylogenetic hypothesis and divergence‐date estimates are strongly at odds with Gondwanan‐vicariance isolating mechanisms. In contrast, our data suggest that transoceanic dispersal has played a significant role in governing the contemporary distribution of hystricognath rodents. Molecular‐clock analyses imply a trans‐Tethys dispersal event, broadly confined to the Late Cretaceous, and trans‐Atlantic dispersal within the Early Eocene. Our analyses also imply that the use of the oldest known South American rodent fossil as a calibration point has biased molecular‐clock inferences.  相似文献   

2.
Crabs of the family Hymenosomatidae are common in coastal and shelf regions throughout much of the southern hemisphere. One of the genera in the family, Hymenosoma, is represented in Africa and the South Pacific (Australia and New Zealand). This distribution can be explained either by vicariance (presence of the genus on the Gondwanan supercontinent and divergence following its break-up) or more recent transoceanic dispersal from one region to the other. We tested these hypotheses by reconstructing phylogenetic relationships among the seven presently-accepted species in the genus, as well as examining their placement among other hymenosomatid crabs, using sequence data from two nuclear markers (Adenine Nucleotide Transporter [ANT] exon 2 and 18S rDNA) and three mitochondrial markers (COI, 12S and 16S rDNA). The five southern African representatives of the genus were recovered as a monophyletic lineage, and another southern African species, Neorhynchoplax bovis, was identified as their sister taxon. The two species of Hymenosoma from the South Pacific neither clustered with their African congeners, nor with each other, and should therefore both be placed into different genera. Molecular dating supports a post-Gondwanan origin of the Hymenosomatidae. While long-distance dispersal cannot be ruled out to explain the presence of the family Hymenosomatidae on the former Gondwanan land-masses and beyond, the evolutionary history of the African species of Hymenosoma indicates that a third means of speciation may be important in this group: gradual along-coast dispersal from tropical towards temperate regions, with range expansions into formerly inhospitable habitat during warm climatic phases, followed by adaptation and speciation during subsequent cooler phases.  相似文献   

3.
Abstract Most biogeographical studies propose that southern temperate faunal disjunctions are either the result of vicariance of taxa originated in Gondwana or the result of transoceanic dispersal of taxa originated after the breakup of Gondwana. The aim of this paper is to show that this is a false dichotomy. Antarctica retained a mild climate until mid‐Cenozoic and had lasting connections, notably with southern South America and Australia. Both taxa originally Gondwanan and taxa secondarily on Gondwanan areas were subjected to tectonic‐induced vicariance, and there is no need to invoke ad hoc transoceanic dispersal, even for post‐Gondwanan taxa. These different elements with circumantarctic distributions are here called ‘allochronic taxa’– taxa presently occupying the same area, but whose presence in that area does not belong to the same time period. This model allows accommodation of conflicting sources of evidence now available for many groups with circumantarctic distributions. The fact that the species from both layers are mixed up in the current biodiversity implies the need to use additional sources of evidence – such as biogeographical, palaeontological, geological and molecular – to discriminate which are the original Gondwanan and which are post‐Gondwanan elements in austral landmasses.  相似文献   

4.
Nothofagus (southern beech), with an 80-million-year-old fossil record, has become iconic as a plant genus whose ancient Gondwanan relationships reach back into the Cretaceous era. Closely associated with Wegener's theory of “Kontinentaldrift”, Nothofagus has been regarded as the “key genus in plant biogeography”. This paradigm has the New Zealand species as passengers on a Moa's Ark that rafted away from other landmasses following the breakup of Gondwana. An alternative explanation for the current transoceanic distribution of species seems almost inconceivable given that Nothofagus seeds are generally thought to be poorly suited for dispersal across large distances or oceans. Here we test the Moa's Ark hypothesis using relaxed molecular clock methods in the analysis of a 7.2-kb fragment of the chloroplast genome. Our analyses provide the first unequivocal molecular clock evidence that, whilst some Nothofagus transoceanic distributions are consistent with vicariance, trans-Tasman Sea distributions can only be explained by long-distance dispersal. Thus, our analyses support the interpretation of an absence of Lophozonia and Fuscospora pollen types in the New Zealand Cretaceous fossil record as evidence for Tertiary dispersals of Nothofagus to New Zealand. Our findings contradict those from recent cladistic analyses of biogeographic data that have concluded transoceanic Nothofagus distributions can only be explained by vicariance events and subsequent extinction. They indicate that the biogeographic history of Nothofagus is more complex than envisaged under opposing polarised views expressed in the ongoing controversy over the relevance of dispersal and vicariance for explaining plant biodiversity. They provide motivation and justification for developing more complex hypotheses that seek to explain the origins of Southern Hemisphere biota.  相似文献   

5.
Nothofagus (southern beech), with an 80-million-year-old fossil record, has become iconic as a plant genus whose ancient Gondwanan relationships reach back into the Cretaceous era. Closely associated with Wegener's theory of “Kontinentaldrift”, Nothofagus has been regarded as the “key genus in plant biogeography”. This paradigm has the New Zealand species as passengers on a Moa's Ark that rafted away from other landmasses following the breakup of Gondwana. An alternative explanation for the current transoceanic distribution of species seems almost inconceivable given that Nothofagus seeds are generally thought to be poorly suited for dispersal across large distances or oceans. Here we test the Moa's Ark hypothesis using relaxed molecular clock methods in the analysis of a 7.2-kb fragment of the chloroplast genome. Our analyses provide the first unequivocal molecular clock evidence that, whilst some Nothofagus transoceanic distributions are consistent with vicariance, trans-Tasman Sea distributions can only be explained by long-distance dispersal. Thus, our analyses support the interpretation of an absence of Lophozonia and Fuscospora pollen types in the New Zealand Cretaceous fossil record as evidence for Tertiary dispersals of Nothofagus to New Zealand. Our findings contradict those from recent cladistic analyses of biogeographic data that have concluded transoceanic Nothofagus distributions can only be explained by vicariance events and subsequent extinction. They indicate that the biogeographic history of Nothofagus is more complex than envisaged under opposing polarised views expressed in the ongoing controversy over the relevance of dispersal and vicariance for explaining plant biodiversity. They provide motivation and justification for developing more complex hypotheses that seek to explain the origins of Southern Hemisphere biota.  相似文献   

6.
A recent molecular clock analysis concluded that Gondwanan vicariance and out-of-India dispersal best explained the distribution of Crypteroniaceae and its allies (Conti et al. 2002). A reanalysis of their data using a different molecular dating technique and calibration point is congruent with an alternative hypothesis, namely dispersal between India, Africa, and South America long after the initial break-up of Gondwana.  相似文献   

7.
Aim  The flowering plant family Proteaceae is putatively of Gondwanan age, with modern and fossil lineages found on all southern continents. Here we test whether the present distribution of Proteaceae can be explained by vicariance caused by the break-up of Gondwana.
Location  Africa, especially southern Africa, Australia, New Zealand, South America, New Caledonia, New Guinea, Southeast Asia, Sulawesi, Tasmania.
Methods  We obtained chloroplast DNA sequence data from the rbc L gene, the rbc L- atp B spacer, and the atp B gene from leaf samples of forty-five genera collected from the field and from living collections. We analysed these data using Bayesian phylogenetic and molecular dating methods, with five carefully selected fossil calibration points to obtain age estimates for the nodes within the family.
Results  Four of eight trans-continental disjunctions of sister groups within our sample of the Proteaceae post-date the break-up of Gondwana. These involve independent lineages, two with an Africa-Australia disjunction, one with an Africa–South America disjunction, and one with a New Zealand–Australasia disjunction. The date of the radiation of the bird-pollinated Embothriinae corresponds approximately to the hypothesized date of origin of nectar-feeding birds in Australia.
Main conclusions  The findings suggest that disjunct distributions in Proteaceae result from both Gondwanan vicariance and transoceanic dispersal. Our results imply that ancestors of some taxa dispersed across oceans rather than rafting with Gondwanan fragments as previously thought. This finding agrees with other studies of Gondwanan plants in dating the divergence of Australian, New Zealand and New Caledonian taxa in the Eocene, consistent with the existence of a shared, ancestral Eocene flora but contrary to a vicariance scenario based on accepted geological knowledge.  相似文献   

8.
Historical biological interactions among peripheral landmasses on the periphery of the Indian Ocean Basin (IOB) are generally poorly understood. While interactions based on early Gondwanan vicariance have been used to explain present day lineage distributions, several recent studies have instead inferred dispersal across the IOB. This inference is often advanced because lineages under study have species inhabiting IOB islands. Here we examine the roles of continental vicariance vs. trans-IOB dispersal in the distribution of an avian genus found around the perimeter of the IOB. A molecular phylogeny does reveal evidence of a relationship that would require the inference of trans-IOB dispersal between eastern Africa and Sri Lanka. However, molecular clock data, ancestral area analyses and paleoclimatic reconstructions suggest that vicariance related to tropical forest expansion and retraction is more likely to have facilitated African-Asian interchange, with an initial colonization of Africa from Asia quickly followed by a recolonization of Asia. Subsequent dispersal from Asia to Sri Lanka and islands east of the Sunda Shelf are inferred; these latter islands were colonized in a stepping-stone fashion that culminated in colonization of the Sunda Shelf, and a recolonization of mainland Asia. We propose that circum-IOB distributions, which post-date early Gondwanan breakup, are most likely the result of continent-based vicariant events, particularly those events related to large-scale habitat alterations, and not trans-IOB dispersals.  相似文献   

9.
Abstract Many bryophyte species have distributions that span multiple continents. The hypotheses historically advanced to explain such distributions rely on either long-distance spore dispersal or slow rates of morphological evolution following ancient continental vicariance events. We use phylogenetic analyses of DNA sequence variation at three chloroplast loci ( atpB-rbcL spacer, rps4 gene, and trnL intron and 3'spacer) to examine these two hypotheses in the trans-Antarctic moss Pyrrhobryum mnioides. We find: (1) reciprocal monophyly of Australasian and South American populations, indicating a lack of intercontinental dispersal; (2) shared haplotypes between Australia and New Zealand, suggesting recent or ongoing migration across the Tasman Sea; and (3) reciprocal monophyly among Patagonian and neotropical populations, suggesting no recent migration along the Andes. These results corroborate experimental work suggesting that spore features may be critical determinants of species range. We use the mid-Miocene development of the Atacama Desert, 14 million years ago, to calibrate a molecular clock for the tree. The age of the trans-Antarctic disjunction is estimated to be 80 million years ago, consistent with Gondwanan vicariance, making it among the most ancient documented cases of cryptic speciation. These data are in accord with niche conservatism, but whether the morphological stasis is a product of stabilizing selection or phylogenetic constraint is unknown.  相似文献   

10.
Fierce debate surrounds the history of organisms in the southern hemisphere; did Gondwanan break-up produce ocean barriers that imposed distribution patterns on phylogenies (vicariance)? Or have organisms modified their distributions through trans-oceanic dispersal? Recent advances in biogeographical theory suggest that the current focus on vicariance versus dispersal is too narrow because it ignores 'geodispersal' (i.e. expansion of species into areas when geographical barriers disappear), extinction and sampling errors. Geodispersal produces multiple, conflicting vicariance patterns, and extinction and sampling errors destroy vicariance patterns. This perspective suggests that it is more difficult to detect vicariance than trans-oceanic dispersal and that specialized methods must be applied if an unbiased understanding of southern hemisphere biogeography is to be achieved.  相似文献   

11.
The modern and native distributions of wax scales are documented and an area cladogram including seventy species is presented. Wax scales are distributed worldwide, but most species are native to either South America or Africa. Their native distribution pattern is discussed in relation to their host-plant specificity and to the dispersal and vicariance theories of biogeography. The vicariance theory is preferred, because the pattern can be explained satisfactorily by plate tectonics but not by dispersal from a centre of origin. The wax scale group probably originated in the combined South American–African continent at least 97 million yr ago.  相似文献   

12.
Disjunctive distributions across paleotropical regions in the Indian Ocean Basin (IOB) often invoke dispersal/vicariance debates. Exacum (Gentianaceae, tribe Exaceae) species are spread around the IOB, in Africa, Madagascar, Socotra, the Arabian peninsula, Sri Lanka, India, the Himalayas, mainland Southeast Asia including southern China and Malaysia, and northern Australia. The distribution of this genus was suggested to be a typical example of vicariance resulting from the breakup of the Gondwanan supercontinent. The molecular phylogeny of Exacum is in principle congruent with morphological conclusions and shows a pattern that resembles a vicariance scenario with rapid divergence among lineages, but our molecular dating analysis demonstrates that the radiation is too recent to be associated with the Gondwanan continental breakup. We used our dating analysis to test the results of DIVA and found that the program predicted impossible vicariance events. Ancestral area reconstruction suggests that Exacum originated in Madagascar, and divergence dating suggests its origin was not before the Eocene. The Madagascan progenitor, the most recent common ancestor of Exacum, colonized Sri Lanka and southern India via long-distance dispersals. This colonizer underwent an extensive range expansion and spread to Socotra-Arabia, northern India, and mainland Southeast Asia in the northern IOB when it was warm and humid in these regions. This widespread common ancestor retreated subsequently from most parts of these regions and survived in isolation in Socotra-Arabia, southern India-Sri Lanka, and perhaps mainland Southeast Asia, possibly as a consequence of drastic climatic changes, particularly the spreading drought during the Neogene. Secondary diversification from these surviving centers and Madagascar resulted in the extant main lineages of the genus. The vicariance-like pattern shown by the phylogeny appears to have resulted from long-distance dispersals followed by extensive range expansion and subsequent fragmentation. The extant African species E. oldenlandioides is confirmed to be recently dispersed from Madagascar.  相似文献   

13.
Disjunct species distributions may result from a combination of geologic events and long-distance dispersal. The foliose lichen species complex Leptogium furfuraceum-L. pseudofurfuraceum has an intercontinental disjunction pattern. Populations of this species complex are found in western North America, southern South America, Africa, and southern Europe. We conducted a phylogenetic study to reconstruct the biogeographic history of this species complex using two ribosomal genes (ITS and LSU) and a protein-coding gene (partial RPB2). Results indicated that the complex comprises four geographically restricted genetic lineages. A sister relationship was found between populations from the same hemispheres, incongruent with previous data derived from morphological characteristics and geographical classification schemes. Incorporating Bayesian ancestral area reconstruction and Bayesian divergence time estimation, we proposed an evolutionary hypothesis for the species complex. The results suggested that processes of biotic expansion via transoceanic dispersal were responsible for the species divergence and distribution patterns observed today. This study also expands the view that cryptic speciation is not a rare phenomenon among fungi and lichens.  相似文献   

14.
The distribution patterns of many fishes between the three continents (Africa, Australia, and South America) in the Southern Hemisphere have been uncovered to be influenced by mostly vicariance or historical dispersal. Although some demersal fishes with intercontinental distribution are suggested to be more influenced by current/recent dispersal, few genetic studies have been made for demersal fishes so far. To provide more information for such fishes, genetic divergence was analyzed for two pairs of gadiform species and subspecies distributed around Australasia and South America: the blue grenadier, Macruronus novaezelandiae (from New Zealand) and the Patagonian grenadier, M. magellanicus (from South America) as well as two subspecies of the southern blue whiting, Micromesistius australis pallidus (from New Zealand) and M. a. australis (from South America). The sequence analyses of two mitochondrial DNA regions showed no divergence between Australasian and South American populations of the grenadiers and the southern blue whiting. The microsatellite DNA analysis also indicated significant but very minimal genetic differentiation between the two geographic populations of each pair. These results imply rather recent separation of the two geographic populations. Current/recent dispersal may be an important common factor for determining the distribution of demersal fishes in the Southern Hemisphere. Nonetheless, low but significant genetic differentiation observed requires treating the two populations of the economically important grenadiers and southern blue whiting, respectively, as different stocks for proper resource management.  相似文献   

15.
Oceans, or other wide expanses of inhospitable environment, interrupt present day distributions of many plant groups. Using molecular dating techniques, generally incorporating fossil evidence, we can estimate when such distributions originated. Numerous dating analyses have recently precipitated a paradigm shift in the general explanations for the phenomenon, away from older geological causes, such as continental drift, in favour of more recent, long-distance dispersal (LDD). For example, the ‘Gondwanan vicariance’ scenario has been dismissed in various studies of Indian Ocean disjunct distributions. We used the gentian tribe Exaceae to reassess this scenario using molecular dating with minimum (fossil), maximum (geological), secondary (from wider analyses) and hypothesis-driven age constraints. Our results indicate that ancient vicariance cannot be ruled out as an explanation for the early origins of Exaceae across Africa, Madagascar and the Indian subcontinent unless a strong assumption is made about the maximum age of Gentianales. However, both the Gondwanan scenario and the available evidence suggest that there were also several, more recent, intercontinental dispersals during the diversification of the group.  相似文献   

16.
Aim The aim of this study was to determine the contributions of Gondwanan vicariance and marine dispersal to the contemporary distribution of galaxiid fishes. This group has been central in arguments concerning the roles of dispersal and vicariance in the Southern Hemisphere, as some taxa have marine life history stages through which transoceanic dispersal may have been facilitated, yet other galaxiids are entirely restricted to freshwaters. Location Southern Hemisphere land masses of Gondwanan derivation. Methods Biogeographic hypotheses of Gondwanan vicariance and marine dispersal were tested using four lines of evidence: (1) concordance of species–area phylogenetic relationships, (2) molecular estimates of lineage divergence times with a priori expectations based on plate tectonics, (3) reconstructions of ancestral dispersal capabilities, and (4) reconstructions of distribution inheritance scenarios (using the dispersal–extinction–cladogenesis model to infer historical ranges and dispersal and extinction events). Results Phylogenetic relationships were reconstructed from 4531 mitochondrial and nuclear nucleotide characters, and 181 morphological characters, across 53 of the 56 presently recognized species. Phylogenetic relationships were generally well resolved and supported among galaxiids using the combined dataset, and conflicting relationships between molecular and morphological datasets typically received low topological support from either or both datasets. Transoceanic disjunctions were exhibited at 16 nodes, but only three pre‐dated relevant continental fragmentation events; furthermore, ancestral distribution inheritance scenarios for two of these nodes reflected cladogenesis within, rather than between, Gondwanan land masses, and ancestral marine dispersal capability could not be rejected for all three. Instead, the four lines of evidence surveyed suggest that Gondwanan vicariance occurred twice, but in both instances was preceded by marine dispersal between land masses, and in at least one instance was initiated by the cessation of marine dispersal subsequent to continental fragmentation. Main conclusions Gondwanan vicariance appears to have been preceded by marine dispersal in the few instances where it may explain contemporary galaxiid distribution, such that these biogeographic mechanisms may sometimes have a synergistic relationship.  相似文献   

17.
Evidence for Gondwanan vicariance in an ancient clade of gecko lizards   总被引:2,自引:0,他引:2  
Aim Geckos (Reptilia: Squamata), due to their great age and global distribution, are excellent candidates to test hypotheses of Gondwanan vicariance against post‐Gondwanan dispersal. Our aims are: to generate a phylogeny of the sphaerodactyl geckos and their closest relatives; evaluate previous phylogenetic hypotheses of the sphaerodactyl geckos with regard to the other major gecko lineages; and to use divergence date estimates to inform a biogeographical scenario regarding Gondwanan relationships and assess the roles of vicariance and dispersal in shaping the current distributions of the New World sphaerodactyl geckos and their closest Old World relatives. Location Africa, Asia, Europe, South America, Atlantic Ocean. Methods We used parsimony and partitioned Bayesian methods to analyse data from five nuclear genes to generate a phylogeny for the New World sphaerodactyl geckos and their close Old World relatives. We used dispersal–vicariance analysis to determine ancestral area relationships among clades, and divergence times were estimated from the phylogeny using nonparametric rate smoothing. Results We recovered a monophyletic group containing the New World sphaerodactyl genera, Coleodactylus, Gonatodes, Lepidoblepharis, Pseudogonatodes and Sphaerodactylus, and the Old World Gekkotan genera Aristelliger, Euleptes, Quedenfeldtia, Pristurus, Saurodactylus and Teratoscincus. The dispersal–vicariance analysis indicated that the ancestral area for this clade was North Africa and surrounding regions. The divergence between the New World spaherodactyl geckos and their closest Old World relative was estimated to have occurred c. 96 Myr bp . Main conclusions Here we provide the first molecular genetic phylogenetic hypothesis of the New World sphaerodactyl geckos and their closest Old World relatives. A combination of divergence date estimates and dispersal–vicariance analysis informed a biogeographical scenario indicating that the split between the sphaerodactyl geckos and their African relatives coincided with the Africa/South America split and the opening of the Atlantic Ocean. We resurrect the family name Sphaerodactylidae to represent the expanded sphaerodactyl clade.  相似文献   

18.
Gondwanan vicariance, long‐distance dispersal (LDD), and boreotropical migration have been proposed as alternative hypotheses explaining the pantropical distribution pattern of organisms. In this study, the historical biogeography of the pond skater genus Limnogonus was reconstructed to evaluate the impact of biogeographical scenarios in shaping their modern transoceanic disjunction. We sampled almost 65% of recognized Limnogonus species. Four DNA fragments including 69 sequences were used to reconstruct a phylogram. Divergence time was estimated using a Bayesian relaxed clock method and three fossil calibrations. Diversification dynamics and ancestral area reconstruction were investigated by using maximum likelihood and Bayesian approaches. Our results showed the crown group of Limnogonus originated and diversified in Africa in the early Eocene (49 Ma, HPD: 38–60 Ma), subsequently expanding into other regions via dispersal. The colonization of the New World originated from the Oriental Region probably via the Bering Land Bridge in the late Eocene. Two split events between the Old World and New World were identified: one between Neotropics and Oriental region around the middle Oligocene (30 Ma, HPD: 22–38 Ma), and the other between Neotropics and Africa during the middle Miocene (14 Ma, HPD: 8–21 Ma). The evolutionary history of Limnogonus involved two biogeographical processes. Gondwanan vicariance was not supported in our analyses. The diversification of Limnogonus among Africa, Oriental, and Neotropical regions corresponded with the age of land bridge connection and dispersed as a member associated with the broad boreotropical belt before local cooling (34 Ma). The current transoceanic disjunctions in Limnogonus could be better explained by the disruption of “mixed‐mesophytic” forest belt; however, the direct transoceanic LDD between the Neotropics and Africa could not be ruled out. In addition, the “LDD” model coupled with island hopping could be a reasonable explanation for the diversification of the Oriental and Australian regions during the Oligocene.  相似文献   

19.
Since the acceptance of Wegener's theory of plate tectonics in the 1960s, continental drift vicariance has been proposed as an explanation for pan-Gondwanan faunal distributions. Given the recognition of historical connections among continents, it no longer was necessary to invoke hypotheses of dispersal across nearly insurmountable barriers. The application of continental drift vicariance theory to Gondwanan floral and faunal distributions provided reasonable explanations for such unusual distributions as that of the southern beech (Nothofagus) and chameleons. However, recent studies have demonstrated a significant, if not dominant, role for dispersal in the present-day distributions of these and numerous other "Gondwanan" taxa. The evolutionary histories of three Malagasy groups (boid snakes, podocnemid turtles, and iguanid lizards) commonly have been interpreted as reflecting vicariance because of continental drift associated with the breakup of Gondwana. Bayesian analyses of divergence ages suggest that this pattern is the result of vicariance coincident with the isolation of Madagascar in the Late Cretaceous (approximately 80 million years ago). This represents the first temporal evidence linking the vicariant origin of extant Malagasy vertebrates to a single geologic event. Specifically, our data provide strong, independently corroborated evidence for a contiguous Late Cretaceous Gondwana, exclusive of Africa and connected via Antarctica.  相似文献   

20.
The moss bugs of the Peloridiidae, a small group of cryptic and mostly flightless insects, is the only living family in Coleorrhyncha (Insecta: Hemiptera). Today 37 species in 17 genera are known from eastern Australia, New Zealand, New Caledonia and Patagonia, and the peloridiids are thereby a group with a classical southern Gondwanan distribution. To explicitly test whether the present-day distribution of the Peloridiidae actually results from the sequential breakup of southern Gondwana, we provide the first total-evidence phylogenetic study based on morphological and molecular characters sampled from about 75% of recognized species representing 13 genera. The results largely confirm the established morphological phylogenetic context except that South American Peloridium hammoniorum constitutes the sister group to the remaining peloridiids. A timescale analysis indicates that the Peloridiidae began to diversify in the land mass that is today's Patagonia in the late Jurassic (153 Ma, 95% highest posterior density: 78–231 Ma), and that splitting into the three extant well-supported biogeographical clades (i.e. Australia, Patagonia and New Zealand/New Caledonia) is consistent with the sequential breakup of southern Gondwana in the late Cretaceous, indicating that the current transoceanic disjunct distributions of the Peloridiidae are best explained by a Gondwanan vicariance hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号