首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proline-directed protein kinase (PDPK), a complex of p34cdc2 and p58cyclin A, phosphorylates bovine neurofilaments (NFs) in vitro. Incubation of intact filaments with PDPK led to strong labeling of the heavy (NF-H) and middle (NF-M) molecular weight NF proteins and weaker labeling of the low molecular weight protein (NF-L). All three proteins were phosphorylated in solution, with the best substrate being NF-H. Proteins that had been dephosphorylated by enzymatic treatment were better substrates than native proteins--as many as 6 mol of phosphate were incorporated per mole of NF-H. Partial proteolytic cleavage experiments combined with two-dimensional peptide mapping indicated that NF-H and NF-M were phosphorylated predominantly in the tail domains, with some phosphate also appearing in the heads. Soluble NF-L is phosphorylated on the head domain peptide L-3, whereas NF-L within intact filaments is phosphorylated only on the tail domain peptide L-1. Phosphorylation does not lead to filament disassembly. A possible role for PDPK in NF phosphorylation in vivo is discussed.  相似文献   

2.
3.
Although cell polyploidization is not an infrequent event in mammalian cells and is common in tumours, the mechanisms involved are not well understood. Using the murine B16 cell line as a model, we evaluated the role of some key proteins involved in cell cycle progression: p34cdc2, cyclin B1 and PCNA. By means of flow cytometry, we showed that both in modal- and in high-ploidy subpopulations, almost all cells were p34cdc2-positive. In the modal-ploidy subpopulation only 17.1% cells were cyclin B1-positive and 85.6% PCNA-positive; in contrast, in the high-ploidy subpopulation up to 91.8% cells were cyclin B1-positive and 97.3% cells were PCNA-positive (P < 0.001). Immunofluorescence microscopy showed that PCNA was located in the nucleus; p34cdc2, both in the nucleus and cytoplasm; and cyclin B1 yielded a cytoplasmic spotted pattern with a perinuclear reinforcement. After a 24-h incubation with 3[H]-thymidine followed by withdrawal of the isotope, high-ploidy cells remained labelled 8 days after thymidine withdrawal, in contrast to modalploidy cells. Taken together, our results suggest that polyploid cells are not quiescent, their cell cycle is longer than that of the modal-ploidy population, and they maintain cyclin B1 throughout the cycle, which may contribute to their genesis by impeding the exit from mitosis.  相似文献   

4.
Upon fertilization, the sea urchin egg synthesizes proteins which impart a Ca2+ dependence to M-phase onset. A potential target of this Ca2+ dependence may be CaM kinase-II (the multifunctional [type II] Ca2+/calmodulin [CaM]-dependent protein kinase) which is necessary for nuclear envelope breakdown in fertilized sea urchin eggs. This study was intended to determine whether sea urchin CaMK-II is activated after fertilization and whether it interacts with other known M-phase regulators, such as p34cdc2. We report that total CaMK-II activity, measured by solution assays, increases after fertilization, peaking just prior to cleavage. Interestingly, total CaMK-II activity continues to fluctuate, peaking again prior to second and third cleavage. Gel assays also reveal enhanced levels of the 56 and 62 kDa potential CaMK-II phosphoproteins after fertilization. Finally, CaMK-II activity and only the 62 kDa phosphoprotein physically associate with p34cdc2, but again only after fertilization. These changes in CaMK-II activity and p34cdc2-association after fertilization may ensure that Ca2+ signals are targeted to the M-phase machinery at the appropriate developmental times.  相似文献   

5.
We have taken advantage of the synchrony of meiotic prophase I in Lilium microsporocytes to investigate the presence and involvement in four stages of meiotic prophase I (leptotene, zygotene, pachytene, and diplotene) of the p34cdc2 H1 histone kinase, a component of MPF and a key participant in division control in other eukaryotes. H1 kinase activity showed a peak pattern during meiotic prophase I with the highest kinase activity at pachytene. A monoclonal antibody directed against a highly conserved region of p34cdc2 (termed the 'PSTAIR') recognized three major protein forms by immunoblotting. The highest level of the fastest-migrating form was observed at pachytene, coinciding with the highest activity of H1 kinase. Both the proteins recognized by the anti-PSTAIR antibody and H1 histone kinase activity were retained on beads conjugated with p13suc1, a protein known to physically associate with p34cdc2. These observations suggest that p34cdc2 or protein(s) highly homologous to p34cdc2 is a component of Lilium H1 histone kinase and plays a role in regulating meiotic prophase I.  相似文献   

6.
The effects of phenytoin, a potent antiepileptic drug, on the active transport of cations within membranes remain controversial. To assess the direct effects of phenytoin on the Na+,K+ pump, we studied the drug's influence on the phosphorylation of partially purified (Na+,K+)-ATPase from mouse brain. (Na+,K+)-ATPase subunits were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phenytoin, in vitro, decreased net phosphorylation of the (Na+,K+)-ATPase catalytic subunit in a dose-dependent manner (approximately 50% at 10(-4) M). When the conversion of E1-P to E2-P, e.g., the two major phosphorylated conformational states of (Na+,K+)-ATPase, was blocked by oligomycin or N-ethylmaleimide, phenytoin had no effect. The results suggest that phenytoin acts on the phosphatasic component of the reaction cycle, decreasing the phosphorylation level of the enzyme.  相似文献   

7.
Abstract Cell envelopes of Pseudomonas fluorescens , cytoplasmic membrane, peptidoglycan and outer membrane were obtained from a fractionation procedure and tested for their metal binding capacity. Isolated envelopes (cytoplasmic membrane, peptidoglycan and outer membrane) were chemically modified and functional carboxyl groups transformed to electropositive amine groups, using carbodiimide ethylenediamine. Transformation of carboxyl groups was evaluated by measuring total amine groups in all fractions (modified or not). Using equilibrium dialysis and Scatchard plots for the data, we have established that isolated unmodified cell envelopes (cytoplasmic membrane, peptidoglycan and outer membrane) possess at least two types of metal binding sites with different association constants ( K a and K 'a). Introduction of positive charges into the bacterial envelopes resulted in the disappearance of one type of metal binding site which had the highest association constant value for Ni2+, Cu2+ and Zn2+. All fractions, modified or not, always presented at least two types of binding sites with different association constants for Cd2+.  相似文献   

8.
A variety of metal microprojectiles are currently used for carrying foreign DNA into living cells via particle-acceleration techniques. While developing a microprojectile-mediated protocol for transforming cells of sugarbeet ( Beta vulgaris L.), formation of a blue precipitate was observed with the indigoqenic substrate 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid (X-gluc) in the absence of gusA DNA encoding β-D-glucuronidase (GUS). Tungsten microcarriers, but not gold or silicon carbide, proved capable of catalyzing the cleavage of the glucuronide residue from three histochemical substrates evaluated: X-gluc, salmon X-gluc and magenta X-gluc. Indigo-stained sugarbeet cells were observed following bombardment with tungsten in the absence of DNA. Addition of oxidative catalysts to tungsten microcarriers during substrate incubation had no apparent effect on the metal-mediated catalysis. Treatment of microcarriers with Proteinase K and heat ruled out the presence of enzymes. Microbiological evaluation indicated the absence of contaminating microbes. Similarly, metal-catalyzed hydrolysis of the fluorogenic substrate 4-methylumbelliferyl-β-D-glucuronic acid (4-MUG) was observed in the presence of tungsten spheres but not with gold or silicon carbide particles. With this substrate, hydrolysis also occurred with millimolar concentrations of Cu2+, Fe2+ and Zn2+ ions. Consequently, careful monitoring of DNA-minus controls and avoidance of millimolar concentrations of Cu2+, Fe2+ and Zn2+ ions are recommended in microprojectile bombardment experiments where transient assays for gusA expression are performed.  相似文献   

9.
The effects of nerve growth factor (NGF) on induction of Na+,K+-ATPase were examined in a rat pheochromocytoma cell line, PC12h. Na+,K+-ATPase activity in a crude particulate fraction from the cells increased from 0.37 +/- 0.02 (n = 19) to 0.55 +/- 0.02 (n = 20) (means +/- SEM, mumol Pi/min/mg of protein) when cultured with NGF for 5-11 days. The increase caused by NGF was prevented by addition of specific anti-NGF antibodies. Epidermal growth factor and insulin had only a small effect on induction of Na+,K+-ATPase. A concentration of basic fibroblast growth factor three times higher than that of NGF showed a similar potency to NGF. The molecular form of the enzyme was judged as only the alpha form in both the untreated and the NGF-treated cells by a simple pattern of low-affinity interaction with cardiotonic steroids: inhibition of enzyme activity by strophanthidin (Ki approximately 1 mM) and inhibition of Rb+ uptake by ouabain (Ki approximately 100 microM). As a consequence, during differentiation of PC12h cells to neuron-like cells, NGF increases the alpha form of Na+,K+-ATPase, but does not induce the alpha(+) form of the enzyme, which has a high sensitivity for cardiotonic steroid and is a characteristic form in neurons.  相似文献   

10.
Effects of interrupted K+ supply on different parameters of growth and mineral cation nutrition were evaluated for spring wheat (Triticum aestivum L. cv. Svenno). K+ (2.0 mM) was supplied to the plants during different periods in an otherwise complete nutrient solution. Shoot growth was reduced before root growth after interruption in K+ supply. Root structure was greatly affected by the length of the period in K+ -free nutrient solution. Root length was minimal, and root branching was maximal within a narrow range of K+ status of the roots. This range corresponded to cultivation for the last 1 to 3 days, of 11 in total, in K+ -free nutrient solution, or to continuous cultivation in solution containing 0.5 to 2 mM K+. In comparison, both higher and lower internal/external K+ concentrations had inhibitory effects on root branching. However, the differing root morphology probably had no significant influence on the magnitude of Ca2+, Mg2+ and Na+ uptake. Uptake of Ca2+ and especially Mg2+ significantly increased after K+ interruption, while Na+ uptake was constant in the roots and slowly increased in the shoots. The two divalent cations could replace K+ in the cells and maintain electroneutrality down to a certain minimal range of K+ concentrations. This range was significantly higher in the shoot [110 to 140 μmol (g fresh weight)?1] than in the root [20 to 30 μmol (g fresh weight)?1]. It is suggested that the critical K+ values are a measure of the minimal amount of K+ that must be present for physiological activity in the cells. At the critical levels, K+ (86Rb) influx and Ca2+ and Mg2+ concentrations were maximal. Below the critical K+ values, growth was reduced, and Ca2+ and Mg2+ could no longer substitute for K+ for electrostatic balance. In a short-term experiment, the ability of Ca2+ to compete with K+ in maintaining electroneutrality in the cells was studied in wheat seedlings with different K+ status. The results indicate that K+, which was taken up actively and fastest at the external K+ concentration used (2.0 mM), partly determines the size of Ca2+ influx.  相似文献   

11.
12.
Excretion of minerals by the NaCl-resistant and comparatively cadmium-resistant tree Tamarix aphylla (L.) Karst, was investigated. Cd2+ was excreted by plants exposed for 1–10 days to 9 or 45 μ M Cd2+ solutions. Excretion of this toxic ion increased considerably with time but was less than 5% of the quantities that had been accumulated in the shoots. Excretion of Na+ and Cl was positively correlated with NaCl concentration (1.5, 10, 50 m M ) of the medium. The Na+/Cl ratios of the excrete were positively correlated with the concentration of the treatment solution. Ca2+ excretion decreased with increasing NaCl concentrations of the solution. Excretion of K+ and Mg2+ was only little affected by NaCl. Excretion of Li+ occurred whenever this element was supplied in the uptake solution; daily excretion rates of Li+ increased with time. The ecological significance of excretion is discussed in relation to the low selectivity of the mechanism in T. aphylla .  相似文献   

13.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

14.
Levels of Mg2+, Ca2+ and Fe2+/Fe3+ were determined in roots and shoots of sugar beet seedlings (Beta vulgaris L. cv. Monohill) cultured for 5 weeks in a complete nutrient solution to which either Cd2+ (0, 5 or 50 μM), EDTA (0, 10 or 100 μM) or a combination of both was added. The plants subjected to the various treatments showed a variety of deficiency symptoms. Leaves of the Cd2+-treated plants became thin and chlorotic (Mg- and Fe-deficiency symptoms). The plants showed reduced growth and developed only a few brownish roots with short laterals (Ca-deficiency symptoms). EDTA treatment resulted in green, stunted, hard leaves and reduced growth (Ca-deficiency symptoms). The deficiency symptoms observed correspond well with the observed uptake rates and distributions of Mg2+, Ca2+ and Fe2+/Fe3+. Increases in either Cd2+, EDTA or a combination of both in the growth medium, were correlated with increasing Mg2+ levels in the roots and with decreasing Mg2+ levels in the shoots. Cd2+ alone or in combination with EDTA had little influence on Ca2+ levels in the shoots but decreased Ca2+ levels in the roots. Thus, Cd2+ affects Mg2+ and Ca2+ transport in opposite ways: Mg2+ transport to the shoots is inhibited while that of Ca2+ is facilitated. Treatment with EDTA alone did not affect Ca2+ concentrations in either the shoots or the roots. Treatment with Cd2+ lowered Fe2+ concentrations in both roots and shoots.  相似文献   

15.
16.
Full-grown amphibian oocytes that had been arrested at meiotic prophase I contained an activity that prevented the cell cycle from progressing beyond a G2-like stage. Injection of the contents of germinal vesicles (GV-content) or cytoplasm obtained from oocytes of the frog Rana rugosa prevented fertilized eggs of Cynops pyrrhogaster or Bufo japonicus from cleaving. The nuclei in the arrested eggs consisted of thin chromosomes and nucleolus-like particles enclosed within clear nuclear membrane and their volume increased as a function of time after injection. Cycling of maturation-promoting factor (MPF) did not occur in the injected eggs, but DNA synthesis was not disturbed. The injection of exogenous MPF into the eggs induced the reinitiation of the cell cycle with progression to the M phase and subsequent cleavage. Furthermore, the injection into the full-grown oocytes of Bufo inhibited induction of the maturation of oocytes by progesterone. These results demonstrate that a factor that arrests the cell cycle either at a G2-like stage of mitosis or at prophase in meiosis is present both in the GV and cytoplasm of frog oocytes. We refer to this factor as a G2-specific cytostatic factor (G2-CSF). G2-CSF may play an important role not only in the physiological arrest at prophase I in meiosis, but also in regulation of the G2/M transition in the cell cycle of early embryonic cells.  相似文献   

17.
Entry of the divalent cations Ni2+, Co2+ and Zn2+ into cells of maize ( Zea mays L. cv. Dekalb XL 85) root tissue is accompanied by an acidification of the incubation medium, a decrease in both the pH of the cell sap and the level of malate in the cells, and by an inhibition of dark fixation of CO2. K+, on the contrary, induces only a very low acidification of the incubation medium, does not change either the pH of the cell sap or the malate level in the cells, and induces an increase in CO2 dark fixation. Different mechanisms are postulated for the stimulation of proton extrusion by divalent cations and K+.  相似文献   

18.
In M. braunii, the uptake of NO3 and NO2 is blue-light-dependent and is associated with alkalinization of the medium. In unbuffered cell suspensions irradiated with red light under a CO2-free atmosphere, the pH started to rise 10s after the exposure to blue light. When the cellular NO3 and NO2 reductases were active, the pH increased to values of around 10, since the NH4+ generated was released to the medium. When the blue light was switched off, the pH stopped increasing within 60 to 90s and remained unchanged under background red illumination. Titration with H2SO4 of NO3 or NO2 uptake and reduction showed that two protons were consumed for every one NH4+ released. The uptake of Cl was also triggered by blue light with a similar 10 s time response. However, the Cl -dependent alkalinization ceased after about 3 min of blue light irradiation. When the blue light was turned off, the pH immediately (15 to 30 s) started to decline to the pre-adjusted value, indicating that the protons (and presumably the Cl) taken up by the cells were released to the medium. When the cells lacked NO3 and NO2 reductases, the shape of the alkalinization traces in the presence of NO3 and NO2 was similar to that in the presence of Cl, suggesting that NO3 or NO2 was also released to the medium. Both the NO3 and Cl-dependent rates of alkalinization were independent of mono- and divalent cations.  相似文献   

19.
Abstract: Tyrosine hydroxylase (TOH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated by phosphorylation. Activation of histaminergic H1 receptors on cultured bovine adrenal chromaffin cells stimulated a rapid increase in TOH phosphorylation (within 5 s) that was sustained for at least 5 min. The initial increase in TOH phosphorylation (up to 1 min) was essentially unchanged by the removal of extracellular Ca2+. In contrast, the H1-mediated response was abolished by preloading the cells with BAPTA acetoxymethyl ester (50 µ M ) and significantly reduced by prior exposure to caffeine (10 m M for 10 min) to deplete intracellular Ca2+. Trypticphosphopeptide analysis by HPLC revealed that the H1 response in the presence or absence of extracellular Ca2+ resulted in a major increase in the phosphorylation of Ser19 with smaller increases in that of Ser40 and Ser31. In contrast, although a brief stimulation with nicotine (30 µ M for 60 s) also resulted in a major increase in Ser19 phosphorylation, this response was abolished in the absence of extracellular Ca2+. These data indicate that the mobilization of intracellular Ca2+ plays a crucial role in supporting H1-mediated TOH phosphorylation and may thus have a potentially important role in regulating catecholamine synthesis.  相似文献   

20.
Abstract: The large intracellular loop (IL) of the γ2 subunit of the cloned human γ-aminobutyric acidA (GABAA) receptor (γ2IL) was expressed in bacteria as glutathione- S -transferase and staphylococcal protein A fusion proteins. Mice were immunized with the fusion proteins (one protein per animal), and monoclonal antibodies were obtained. Six monoclonal antibodies reacted with the γ2IL moiety of the fusion proteins. Three of these monoclonal antibodies also immunoprecipitated a high proportion of the GABAA/benzodiazepine receptors from bovine and rat brain and reacted with a wide 44,000–49,000-Mr peptide band in immunoblots of affinity-purified GABAA receptors. These monoclonal antibodies are valuable reagents for the molecular characterization of the GABAA receptors in various brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号