首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidized protein deposition and accumulation have been implicated in the aetiology of a wide variety of age-related pathologies. Protein oxidation in vivo commonly results in the in situ modification of amino acid side chains, generating new oxidized amino acid residues in proteins. We have demonstrated previously that certain oxidized amino acids can be (mis)incorporated into cell proteins in vitro via protein synthesis. In the present study, we show that incorporation of o- and m-tyrosine resulted in increased protein catabolism, whereas dopa incorporation generated proteins that were inefficiently degraded by cells. Incorporation of higher levels of L-dopa into proteins resulted in an increase in the activity of lysosomal cathepsins, increased autofluorescence and the generation of high-molecular-mass SDS-stable complexes, indicative of protein aggregation. These effects were due to proteins containing incorporated L-dopa, since they were not seen with the stereoisomer D-dopa, which enters the cell and generates the same reactive species as L-dopa, but cannot be incorporated into proteins. The present study highlights how the nature of the oxidative modification to the protein can determine the efficiency of its removal from the cell by proteolysis. Protection against the generation of dopa and other species that promote resistance to proteolysis might prove to be critical in preventing toxicity from oxidative stress in pathologies associated with protein deposition, such as atherosclerosis, Alzheimer's disease and Parkinson's disease.  相似文献   

2.
Free tyrosine and tyrosine residues in various peptides and proteins are converted into dopa and dopa residues by tyrosinase (monophenol,L-dopa:oxygen oxidoreductase, EC 1.14.18.1) in the presence of reductants. The efficiency of the tyrosine-to-dopa conversion was examined under varied conditions, such as the substrate-to-tyrosine ratio, concentrations of reductant and oxygen in the reaction solution, pH, temperature and reaction time. The highest dopa yields were achieved with the following optimal conditions for hydroxylation: 0.1 M phosphate buffer at pH 7, 25 mM ascorbic acid, 1 mM tyrosine, 50 micrograms/ml tyrosinase and 20 degrees C. Using these conditions, up to 70% of free tyrosine was converted into dopa, and tyrosine residues in several synthetic peptides were also hydroxylated to dopa residues at ratios as high as free tyrosine. The preparation of hydroxylated analogues of the decapeptide (Ala-Lys-Pro-Ser-Tyr-Pro-Pro-Thr-Tyr-Lys), in particular, may contribute to a better understanding of adhesion in the dopa-containing mussel glue protein.  相似文献   

3.
Dopa phosphates, a new class of compounds, contain phosphate-ester linkages at the 3- and/or 4- positions of the phenylalanine ring of L-dopa. Dopa phosphates have been shown to increase pigment production in the epidermis of hairless mice. Groups of Skh-2 pigmented hairless mice were treated topically with various concentrations of dopa phosphates daily for five weeks. Half of each group received suberythemal UVB radiation three times weekly for four weeks from a bank of filtered FS20 lamps. UVB and dopa phosphates alone each caused a modest increase in epidermal pigmentation. However, treatment of mice with dopa phosphates plus UVB radiation resulted in a marked increase in pigmentation, greater than with either treatment alone. The optimal concentration of dopa phosphates was 0.01% (100 micrograms/ml Tris-glycerol buffer) whether or not they were applied in conjunction with UVB radiation. Histological analyses revealed that dopa phosphates and UVB radiation each caused an increase in the number of pigmented melanocytes in the epidermis. Control groups treated with Tris-glycerol buffer alone, or buffer containing L-phenylalanine or L-dopa showed no significant changes in pigmentation. Our results indicate that dopa phosphates stimulate the production of melanin and affect the development and distribution of melanocytes in the skin of Skh-2 mice. By these criteria, dopa phosphates and UVB act in a similar manner to increase melanin content in the skin. The processes may be related to those recently observed in cultured mouse melanoma cells where dopa phosphates are incorporated into melanin, presumably following enzymatic hydrolysis by cellular phosphatases with the resultant production of L-dopa and inorganic phosphate.  相似文献   

4.
Are L-tyrosine and L-dopa hormone-like bioregulators?   总被引:1,自引:0,他引:1  
Some amino acids have bioregulatory functions, which far exceed those of precursors for proteins or of substrates for specific enzymes. Two of these amino acids, L-tyrosine and L-dopa, are precursors to melanin and catecholamines. In vertebrates, they can act as inducers and regulators of the melanogenic apparatus and of MSH receptors--two quite complex functions that could hardly be performed by mere substrates. Focussing on the pigmentary system as a study model, we therefore explore the hypothesis that L-tyrosine and L-dopa act as hormone-like bioregulators in mammals, with melanocytes regulating tyrosine and dopa activity via their metabolic consumption.  相似文献   

5.
Rapid, saturable, specific and stereoselective binding of L-dopa to crude membranes and purified nuclei from rodent amelanotic melanoma cells is reported. Cross-linking of [3H]dopa to melanoma cell surface emphasized proteins of approx. 55, 30, 25 and less than 20 kDa. It is suggested that these binding sites may regulate melanocyte activity.  相似文献   

6.
7.
Summary Preincubation with the copper-chelator, sodium diethyldithiocarbamate (DDC) and the presence of catalase in the incubation media allowed an accurate and reproducible differentiation of the role of tyrosinase from that of peroxidase in the oxidation of tyrosine and dopa in melanocytes, mast cells and eosinophils. These studies indicated that mammalian peroxidase in melanocytes, mast cells and eosinophils can mediate the conversion of tyrosine to melanin in the presence of dopa co-factor, as well as the conversion of dopa to melanin. With the methods employed, there was no evidence that tyrosinase in the preparations studied had significant ability to mediate the oxidation of tyrosine to melanin (even in the presence of dopa co-factor), although there was abundant evidence that it can mediate the conversion of dopa to melanin. Mammalian peroxidase may have roles in initiating melanin synthesis and catechol amine synthesis in vivo.Supported by USPHS Grant T1 AM 5,220, The General Research Support Fund, Boston City Hospital, and The Pathology Research Fund, St. Vincent Hospital.  相似文献   

8.
The administration of L-dopa to mice causes an increase in the brain concentrations of dopa and dopamine which is related temporally to a reduction in the brain concentration of 5HT. These effects occur concurrently with a reduction in the conversion of intravenously administered 3H-tryptophan to 3H-5HT without an alteration in the accumulation of 3H-tryptophan in the brain. The L-dopa-induced changes in the brain concentrations of dopa, dopamine and 5HT are not altered by pretreatment with drugs (imipramine, chlorimipramine, benztropine, cocaine) which inhibit the neuronal uptake of amines. Current evidence suggests that L-dopa is decarboxylated in 5HT neurons to dopamine, which displaces 5HT from intraneuronal storage sites.  相似文献   

9.
RNA damage and surveillance under oxidative stress   总被引:1,自引:0,他引:1  
Li Z  Wu J  Deleo CJ 《IUBMB life》2006,58(10):581-588
  相似文献   

10.
Male Wistar rats of various age groups were injected daily over a period of 3 weeks with iproniazid (10 micrograms/g body wt.) and L-dihydroxyphenylalanine (L-dopa; 0.1 mg/g body wt.). On the final day 1 h before the termination of the experiment the animals were injected with L-[14C]valine (0.1 microCi/g body wt.). The specific radioactivity of the valine in the proteins of the subcellular fractions of the tissues examined, relative to the time-integrated mean specific radioactivity of this amino acid in the acid-soluble pools of these tissues, was used to assess protein synthesis. The L-dopa/monoamine oxidase-inhibitor treatment was associated with 30--40% inhibition of protein synthesis. Supplementation of the dietary methionine intake by injection of this amino acid markedly diminished the inhibitory action of the L-dopa/monoamine oxidase-inhibitor treatment on protein synthesis in all fractions examined.  相似文献   

11.
Several compounds, structurally and metabolically related to phenylalanine and tyrosine, were tested for their effects on the incorporations of phenylalanine and tyrosine as single units into a protein of the soluble subcellular fraction of rat brain. Of the compounds tested, only L-dopa (L-3,4-dihydroxyphenylalanine) inhibited these incorporations. Further, L-dopa was incorporated into a protein of the same fraction in such a way that it excluded the incorporation of tyrosine as a single unit. Conversely, tyrosine inhibited and excluded the incorporation of L-dopa. The incorporation of L-dopa required ATP (apparent Km = 0.23mM), KCl (apparent Km = 20mM) and MgCl2 (optimal concentration range, 5-16mM). These requirements were similar to those previously determined for the incorporation of tyrosine and phenylalanine. The inactivation rate of the enzymic systems for L-tyrosine and L-dopa incorporations, when kept at 37 degrees C, was the same for both amino acids (half-life = 80 min). It is suggested that the acceptor for the incorporation of dopa is the same as that for the incorporation of tyrosine.  相似文献   

12.
Oxidative stress, manifested by protein oxidation, lipid peroxidation, DNA oxidation and 3-nitrotyrosine formation, among other indices, is observed in Alzheimer's disease (AD) brain. Amyloid beta-peptide (1-42) [Abeta(1-42)] may be central to the pathogenesis of AD. Our laboratory and others have implicated Abeta(1-42)-induced free radical oxidative stress in the neurodegeneration observed in AD brain. This paper reviews some of these studies from our laboratory. Recently, we showed both in-vitro and in-vivo that methionine residue 35 (Met-35) of Abeta(1-42) was critical to its oxidative stress and neurotoxic properties. Because the C-terminal region of Abeta(1-42) is helical, and invoking the i + 4 rule of helices, we hypothesized that the carboxyl oxygen of lle-31, known to be within a van der Waals distance of the S atom of Met-35, would interact with the latter. This interaction could alter the susceptibility for oxidation of Met-35, i.e. free radical formation. Consistent with this hypothesis, substitution of lle-31 by the helix-breaking amino acid, proline, completely abrogated the oxidative stress and neurotoxic properties of Abeta(1-42). Removal of the Met-35 residue from the lipid bilayer by substitution of the negatively charged Asp for Gly-37 abrogated oxidative stress and neurotoxic properties of Abeta(1-42). The free radical scavenger vitamin E prevented A(beta (1-42)-induced ROS formation, protein oxidation, lipid peroxidation, and neurotoxicity in hippocampal neurons, consistent with our model for Abeta-associated free radical oxidative stress induced neurodegeneration in AD. ApoE, allele 4, is a risk factor for AD. Synaptosomes from apoE knock-out mice are more vulnerable to Abeta-induced oxidative stress (protein oxidation, lipid peroxidation, and ROS generation) than are those from wild-type mice. We also studied synaptosomes from allele-specific human apoE knock-in mice. Brain membranes from human apoE4 mice have greater vulnerability to Abeta(1-42)-induced oxidative stress than brain membranes from apoE2 or E3, assessed by the same indices, consistent with the notion of a coupling of the oxidative environment in AD brain and increased risk of developing this disorder. Using immunoprecipitation of proteins from AD and control brain obtained no longer than 4h PMI, selective oxidized proteins were identified in the AD brain. Creatine kinase (CK) and beta-actin have increased carbonyl groups, an index of protein oxidation, and Glt-1, the principal glutamate transporter, has increased binding of the lipid peroxidation product, 4-hydroxy-2-nonenal (HNE). Abeta inhibits CK and causes lipid peroxidation, leading to HNE formation. Implications of these findings relate to decreased energy utilization, altered assembly of cytoskeletal proteins, and increased excitotoxicity to neurons by glutamate, all reported for AD. Other oxidatively modified proteins have been identified in AD brain by proteomics analysis, and these oxidatively-modified proteins may be related to increased excitotoxicity (glutamine synthetase), aberrant proteasomal degradation of damaged or aggregated proteins (ubiquitin C-terminal hydrolase L-1), altered energy production (alpha-enolase), and diminished growth cone elongation and directionality (dihydropyrimindase-related protein 2). Taken together, these studies outlined above suggest that Met-35 is key to the oxidative stress and neurotoxic properties of Abeta(1-42) and may help explain the apoE allele dependence on risk for AD, some of the functional and structural alterations in AD brain, and strongly support a causative role of Abeta(1-42)-induced oxidative stress and neurodegeneration in AD.  相似文献   

13.
L-dopa is a key metabolite in the process of melanogenesis. However, it is difficult to use in biological experiments because it is subject to auto-oxidation and relatively insoluble at neutral pH. Dopa phosphates contain phosphate ester linkages at positions 3 and/or 4 of the phenylalanine ring of L-dopa, rendering them highly soluble and stable to auto-oxidation when compared to L-dopa. Dopa phosphates are readily taken up by melanoma cells in culture and converted to L-dopa and inorganic phosphate by cellular phosphatases, making them useful for studying L-dopa effects in vivo. Here we investigated the effects of dopa phosphates on receptors for MSH in cultured melanoma cells. We found that dopa phosphates caused a 3-fold stimulation of MSH binding capacity by the cells which probably occurred through an increase in the number of receptors for MSH with no apparent change in affinity of the receptors. The increased binding capacity for MSH was followed by increased cellular tyrosinase activity and melanogenesis. Thus dopa phosphates and/or L-dopa can act as regulators of the MSH receptor system. The observations suggest a novel mechanism for regulation of hormonal responsiveness: hormonal signal amplification by a metabolite in the target pathway.  相似文献   

14.
BACKGROUND/AIMS: This study determined alterations in renal dopamine production in streptozotocin-treated rats and explored the mechanisms underlying this alteration. METHODS: Streptozotocin (65 mg/kg) or vehicle was administered to 3-month-old male Wistar rats. Treated animals had hyperglycemia, glycosuria and increased diuresis, natriuresis and excretion of L-dopa. Urinary dopamine and dihydroxyphenylacetic acid were similar to those in control animals. The production of dopamine by renal cortex slices from treated rats was significantly less than that from control animals. The addition of glucose (8.4-18.4 mM) to the incubation medium decreased about 40% the uptake of L-dopa by isolated proximal tubular cells. Scatchard analysis of the saturation curves obtained in this condition showed a decrease in the V(max) without changes in the K(m). RESULTS: Our results confirm previous studies suggesting a renal dopaminergic deficiency in insulin-dependent diabetes and provide evidence strongly suggesting that a decrease in the number of tubular L-dopa transport sites is the underlying defect of this deficiency. CONCLUSION: These results highlight the role of the uptake of dopa as an important modulator of renal dopamine synthesis.  相似文献   

15.
One protein in Aedes aegypti, classified into the aromatic amino acid decarboxylase (AAAD) family based on extremely high sequence homology (~70%) with dopa decarboxylase (Ddc), was biochemically investigated. Our data revealed that this predicted AAAD protein use L-dopa as a substrate, as does Ddc, but it catalyzes the production of 3,4-dihydroxylphenylacetaldehyde (DHPAA) directly from L-dopa and apparently has nothing to do with the production of any aromatic amine. The protein is therefore named DHPAA synthase. This subsequently led to the identification of the same enzyme in Drosophila melanogaster, Anopheles gambiae and Culex quinquefasciatus by an initial prediction of putative DHPAA synthase based on sequence homology and subsequent verification of DHPAA synthase identity through protein expression and activity assays. DHPAA is highly toxic because its aldehyde group readily reacts with the primary amino groups of proteins, leading to protein crosslinking and inactivation. It has previously been demonstrated by several research groups that Drosophila DHPAA synthase was expressed in tissues that produce cuticle materials and apparent defects in regions of colorless, flexible cuticular structures have been observed in its gene mutants. The presence of free amino groups in proteins, the high reactivity of DHPAA with the free amino groups, and the genetically ascertained function of the Drosophila DHPAA synthase in the formation of colorless, flexible cuticle, when taken together, suggest that mosquito and Drosophila DHPAA synthases are involved in the formation of flexible cuticle through their reactive DHPAA-mediated protein crosslinking reactions. Our data illustrate how a seemingly highly toxic pathway can serve for an important physiological function in insects.  相似文献   

16.
The neurotoxic actions of methamphetamine (METH) may be mediated in part by reactive oxygen species (ROS). Methamphetamine administration leads to increases in ROS formation and lipid peroxidation in rodent brain; however, the extent to which proteins may be modified or whether affected brain regions exhibit similar elevations of lipid and protein oxidative markers have not been investigated. In this study we measured concentrations of TBARs, protein carbonyls and monoamines in various mouse brain regions at 4 h and 24 h after the last of four injections of METH (10 mg/kg/injection q 2 h). Substantial increases in TBARs and protein carbonyls were observed in the striatum and hippocampus but not the frontal cortex nor the cerebellum of METH-treated mice. Furthermore, lipid and protein oxidative markers were highly correlated within each brain region. In the hippocampus and striatum elevations in oxidative markers were significantly greater at 24 h than at 4 h. Monoamine levels were maximally reduced within 4 h (striatal dopamine [DA] by 95% and serotonin [5-HT] in striatum, cortex and hippocampus by 60-90%). These decrements persisted for 7 days after METH, indicating effects reflective of nerve terminal damage. Interestingly, NE was only transiently depleted in the brain regions investigated (hippocampus and cortex), suggesting a pharmacological and non-toxic action of METH on the noradrenergic nerve terminals. This study provides the first evidence for concurrent formation of lipid and protein markers of oxidative stress in several brain regions of mice that are severely affected by large neurotoxic doses of METH. Moreover, the differential time course for monoamine depletion and the elevations in oxidative markers indicate that the source of oxidative stress is not derived directly from DA or 5HT oxidation.  相似文献   

17.
This work describes a comparative study of the tyrosinase activity determined using three methods which are the most extensively employed; two radiometric assays using L-tyrosine as substrate (tyrosine hydroxylase and melanin formation activities) and one spectrophotometric assay using L-dopa (dopa oxidase activity). The three methods were simultaneously employed to measure the activities of the soluble, melanosomal, and microsomal tyrosinase isozymes from Harding-Passey mouse melanoma through their purification processes. The aim of this study was to find any correlation among the tyrosinase activities measured by the three different assays and to determine whether that correlation varied with the isozyme and its degree of purification. The results show that mammalian tyrosinase has a greater turnover number for L-dopa than for L-tyrosine. Thus, enzyme activity, expressed as mumol of substrate transformed per min, is higher in assays using L-dopa as substrate than those using L-tyrosine. Moreover, the percentage of hydroxylated L-tyrosine that is converted into melanin is low and is affected by several factors, apparently decreasing the tyrosinase activity measured by the melanin formation assay. Bearing these considerations in mind, average interassay factors are proposed. Their values are 10 to transform melanin formation into tyrosine hydroxylase activity, 100 to transform tyrosine hydroxylase into dopa oxidase activity, and 1,000 to transform melanin formation into dopa oxidase activity. Variations in these values due to the presence in the tyrosinase preparations of either inhibitors or regulatory factors in melanogenesis independent of tyrosinase are also discussed.  相似文献   

18.
Chronic inflammation is now considered to be central to the pathogenesis not only of such medical disorders as cardiovascular disease, multiple sclerosis, diabetes and cancer but also of major depression. If chronic inflammatory changes are a common feature of depression, this could predispose depressed patients to neurodegenerative changes in later life. Indeed there is now clinical evidence that depression is a common antecedent of Alzheimer’s disease and may be an early manifestation of dementia before the cognitive declines becomes apparent. This review summarises the evidence that links chronic low grade inflammation with changes in brain structure that could precipitate neurodegenerative changes associated with Alzheimer’s disease and other dementias. For example, neuronal loss is a common feature of major depression and dementia. It is hypothesised that the progress from depression to dementia could result from the activation of macrophages in the blood, and microglia in the brain, that release pro-inflammatory cytokines. Such cytokines stimulate a cascade of inflammatory changes (such as an increase in prostaglandin E2, nitric oxide in addition to more pro-inflammatory cytokines) and a hypersecretion of cortisol. The latter steroid inhibits protein synthesis thereby reducing the synthesis of neurotrophic factors and preventing reairto damages neuronal networks. In addition, neurotoxic end products of the tryptophan-kynurenine pathway, such as quinolinic acid, accumulate in astrocytes and neurons in both depression and dementia. Thus increased neurodegeneration, reduced neuroprotection and neuronal repair are common pathological features of major depression and dementia. Such changes may help to explain why major depression is a frequent prelude to dementia in later life. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

19.
Cells from virtually all organisms respond to a variety of stresses by the rapid synthesis of a highly conserved set of polypeptides termed heat shock proteins (HSPs). The precise functions of HSPs are unknown, but there is considerable evidence that these stress proteins are essential for survival at both normal and elevated temperatures. HSPs also appear to play a critical role in the development of thermotolerance and protection from cellular damage associated with stresses such as ischemia, cytokines, and energy depletion. These observations suggest that HSPs play an important role in both normal cellular homeostasis and the stress response. This mini-review examines recent evidence and hypotheses suggesting that the HSPs may be important modifying factors in cellular responses to a variety of physiologically relevant conditions such as hyperthermia, exercise, oxidative stress, metabolic challenge, and aging.  相似文献   

20.
Oxidative stress, manifested by protein oxidation, lipid peroxidation, DNA oxidation and 3-nitrotyrosine formation, among other indices, is observed in Alzheimer's disease (AD) brain. Amyloid &#103 -peptide (1-42) [A &#103 (1-42)] may be central to the pathogenesis of AD. Our laboratory and others have implicated A &#103 (1-42)-induced free radical oxidative stress in the neurodegeneration observed in AD brain. This paper reviews some of these studies from our laboratory. Recently, we showed both in-vitro and in-vivo that methionine residue 35 (Met-35) of A &#103 (1-42) was critical to its oxidative stress and neurotoxic properties. Because the C-terminal region of A &#103 (1-42) is helical, and invoking the i +4 rule of helices, we hypothesized that the carboxyl oxygen of lle-31, known to be within a van der Waals distance of the S atom of Met-35, would interact with the latter. This interaction could alter the susceptibility for oxidation of Met-35, i.e. free radical formation. Consistent with this hypothesis, substitution of lle-31 by the helix-breaking amino acid, proline, completely abrogated the oxidative stress and neurotoxic properties of A &#103 (1-42). Removal of the Met-35 residue from the lipid bilayer by substitution of the negatively charged Asp for Gly-37 abrogated oxidative stress and neurotoxic properties of A &#103 (1-42). The free radical scavenger vitamin E prevented A &#103 (1-42)-induced ROS formation, protein oxidation, lipid peroxidation, and neurotoxicity in hippocampal neurons, consistent with our model for A &#103 -associated free radical oxidative stress induced neurodegeneration in AD. ApoE, allele 4, is a risk factor for AD. Synaptosomes from apoE knock-out mice are more vulnerable to A &#103 -induced oxidative stress (protein oxidation, lipid peroxidation, and ROS generation) than are those from wild-type mice. We also studied synaptosomes from allele-specific human apoE knock-in mice. Brain membranes from human apoE4 mice have greater vulnerability to A &#103 (1-42)-induced oxidative stress than brain membranes from apoE2 or E3, assessed by the same indices, consistent with the notion of a coupling of the oxidative environment in AD brain and increased risk of developing this disorder. Using immunoprecipitation of proteins from AD and control brain obtained no longer than 4 h PMI, selective oxidized proteins were identified in the AD brain. Creatine kinase (CK) and &#103 -actin have increased carbonyl groups, an index of protein oxidation, and Glt-1, the principal glutamate transporter, has increased binding of the lipid peroxidation product, 4-hydroxy-2-nonenal (HNE). A &#103 inhibits CK and causes lipid peroxidation, leading to HNE formation. Implications of these findings relate to decreased energy utilization, altered assembly of cytoskeletal proteins, and increased excitotoxicity to neurons by glutamate, all reported for AD. Other oxidatively modified proteins have been identified in AD brain by proteomics analysis, and these oxidatively-modified proteins may be related to increased excitotoxicity (glutamine synthetase), aberrant proteasomal degradation of damaged or aggregated proteins (ubiquitin C-terminal hydrolase L-1), altered energy production ( &#102 -enolase), and diminished growth cone elongation and directionality (dihydropyrimindase-related protein 2). Taken together, these studies outlined above suggest that Met-35 is key to the oxidative stress and neurotoxic properties of A &#103 (1-42) and may help explain the apoE allele dependence on risk for AD, some of the functional and structural alterations in AD brain, and strongly support a causative role of A &#103 (1-42)-induced oxidative stress and neurodegeneration in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号