首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Construction of recombinant DNA by exonuclease recession.   总被引:3,自引:0,他引:3       下载免费PDF全文
We describe a new exonuclease-based method for joining and/or constructing two or more DNA molecules. DNA fragments containing ends complementary to those of a vector or another independent molecules were generated by the polymerase chain reaction. The 3' ends of these molecules as well as the vector DNA were then recessed by exonuclease activity and annealed in an orientation-determined manner via their complementary single-stranded regions. This recombinant DNA can be transformed directly into bacteria without a further ligase-dependent reaction. Using this approach, we have constructed recombinant DNA molecules rapidly, efficiently and directionally. This method can effectively replace conventional protocols for PCR cloning, PCR SOEing, DNA subcloning and site-directed mutagenesis.  相似文献   

2.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

3.
Here we present a modified vector pCMV–3Taq–LIC for a rapid, simple, and relatively cheap method to build expression constructs. After being digested by Nt.BspQI and EcoRV, a lineal vector with specific 11-base single overhangs is obtained. Polymerase chain reaction (PCR) products with complementary overhangs are created by building appropriate extensions into the primers and treating them with T4 DNA polymerase. The annealing of the insert and the vector is performed in the absence of ligase by simple mixing of the DNA fragments. This process is very specific because only the desired products can form. Using this vector, we successfully constructed hnRNP K full-length complementary DNA (cDNA) expression plasmid.  相似文献   

4.
目的构建PHD2基因原核表达载体pET-43.1b(+)-PHD2,实现Nus-PHD2融合蛋白在大肠埃希菌中的可溶性表达。方法用SacⅠ酶切pET-43.1b(+)制备线性化载体,设计与线性化载体两端具有至少15个同源序列的特异性引物,以真核重组质粒pCMV6-Entry-EGLN1为模板,PCR法扩增PHD2目的基因。采用In-Fusion技术构建原核表达载体pET-43.1b(+)-PHD2,并将其导入大肠埃希菌BL21(DE3)中诱导表达。用SDS-PAGE和Western blot分析并鉴定表达出的融合蛋白。用Ni-NTA亲和层析法纯化目的蛋白。结果成功构建了PHD2原核表达载体;SDS-PAGE结果显示融合蛋白以可溶性形式表达;Western blot鉴定表明融合蛋白可以与PHD2单克隆抗体特异性结合。结论实现了Nus-PHD2融合蛋白在大肠埃希菌中的可溶性表达,为PHD2生物学功能的研究奠定了基础。  相似文献   

5.
Ligation-independent cloning of PCR products (LIC-PCR).   总被引:25,自引:11,他引:14       下载免费PDF全文
A new procedure has been developed for the efficient cloning of complex PCR mixtures, resulting in libraries exclusively consisting of recombinant clones. Recombinants are generated between PCR products and a PCR-amplified plasmid vector. The procedure does not require the use of restriction enzymes, T4 DNA ligase or alkaline phosphatase. The 5'-ends of the primers used to generate the cloneable PCR fragments contain an additional 12 nucleotide (nt) sequence lacking dCMP. As a result, the amplification products include 12-nt sequences lacking dGMP at their 3'-ends. The 3'-terminal sequence can be removed by the action of the (3'----5') exonuclease activity of T4 DNA polymerase in the presence of dGTP, leading to fragments with 5'-extending single-stranded (ss) tails of a defined sequence and length. Similarly, the entire plasmid vector is amplified with primers homologous to sequences in the multiple cloning site. The vector oligos have additional 12-nt tails complementary to the tails used for fragment amplification, permitting the creation of ss-ends with T4 DNA polymerase in the presence of dCTP. Circularization can occur between vector molecules and PCR fragments as mediated by the 12-nt cohesive ends, but not in mixtures lacking insert fragments. The resulting circular recombinant molecules do not require in vitro ligation for efficient bacterial transformation. We have applied the procedure for the cloning of inter-ALU fragments from hybrid cell-lines and human cosmid clones.  相似文献   

6.
A new method is described for rapid site-directed mutagenesis of plasmid DNA. The new method, termed enzymatic inverse polymerase chain reaction (EIPCR), uses inverse PCR to amplify the entire plasmid. The key step to EIPCR is the incorporation of identical class 2s restriction sites in both primers. Class 2s restriction enzymes have a recognition site that is located 5' of the cut site (e.g., BsaI: GGTCTCN'NNNN,). Thus, after completing PCR, the ends of the full-length linearized plasmid are digested with the class 2s enzyme incorporated into the primers. The enzyme cuts off its entire recognition site and leaves the plasmid with compatible overhangs on both ends. Thus, in the ligation the only part that becomes part of the plasmid is the NNNN overhang, which can be made to be the native sequence. We have used the method for many plasmids and several class 2s enzymes. As an example, we report here the use of EIPCR for an insertion into pUC19 containing an inactive lacZ alpha-peptide, causing a frameshift that restores lacZ alpha-activity. Of 300 colonies evaluated, greater than 95% had the expected blue phenotype. The BsaI overhangs were correctly combined in all of the 35 blue colonies analyzed by restriction digestion and in all four clones that were sequenced. EIPCR is compared with four related PCR-based mutagenesis techniques. The major advantage of EIPCR over the other methods is the combination of greater than 95% correctly mutated clones with the need for only two PCR primers.  相似文献   

7.
8.
Site-specific mutagenesis and directional subcloning were accomplished by using the polymerase chain reaction to generate products that can recombine to form circular DNA. This DNA was transfected into E. coli without phosphorylation of primers, restriction enzyme digestion or ligation. Specifically, the polymerase chain reaction was used to generate products that when combined, denatured and reannealed, form double-stranded DNA with discrete, cohesive single-stranded ends. The generation of these cohesive ends of DNA permits the formation of precise, directional DNA joints without dependence on enzyme restriction sites. The primers were designed such that these cohesive single-stranded ends annealed to form circular DNA. The recombinant of interest was generated following only 14 amplification cycles. These recombinant circles of DNA were directly transfected into E. coli. In the mutagenesis protocol, the desired mutant was obtained at 83%-100% efficiency. Unwanted mutations were not detected, indicating a less than 0.025% nucleotide misincorporation frequency. In the directional subcloning protocol, inserts were positioned precisely in the recipient plasmid and were in the correct orientation. One unwanted mutation was detected after sequencing 900 bases, indicating a 0.11% nucleotide misincorporation frequency. Each manipulation, from setting up for the DNA amplification to transfection into E. coli. can easily be accomplished in one day.  相似文献   

9.
《Nature methods》2005,2(8):629-630
This method is used to extend partial cDNA clones by amplifying the 5' sequences of the corresponding mRNAs 1-3. The technique requires knowledge of only a small region of sequence within the partial cDNA clone. During PCR, the thermostable DNA polymerase is directed to the appropriate target RNA by a single primer derived from the region of known sequence; the second primer required for PCR is complementary to a general feature of the target-in the case of 5' RACE, to a homopolymeric tail added (via terminal transferase) to the 3' termini of cDNAs transcribed from a preparation of mRNA. This synthetic tail provides a primer-binding site upstream of the unknown 5' sequence of the target mRNA. The products of the amplification reaction are cloned into a plasmid vector for sequencing and subsequent manipulation.  相似文献   

10.
Universal TA cloning   总被引:1,自引:0,他引:1  
TA cloning is one of the simplest and most efficient methods for the cloning of PCR products. The procedure exploits the terminal transferase activity of certain thermophilic DNA polymerases, including Thermus aquaticus (Taq) polymerase. Taq polymerase has non-template dependent activity which preferentially adds a single adenosine to the 3'-ends of a double stranded DNA molecule, and thus most of the molecules PCR amplified by Taq polymerase possess single 3'-A overhangs. The use of a linearized "T-vector" which has single 3'-T overhangs on both ends allows direct, high-efficiency cloning of PCR products, facilitated by complementarity between the PCR product 3'-A overhangs and vector 3'-T overhangs. The TA cloning method can be easily modified so that the same T-vector can be used to clone any double-stranded DNA fragment, including PCR products amplified by any DNA polymerase, as well as all blunt- and sticky-ended DNA species. This technique is especially useful when compatible restriction sites are not available for the subcloning of DNA fragments from one vector to another. Directional cloning is made possible by appropriate hemi-phosphorylation of both the T-vectors and the inserts. With a single T-vector at hand, any DNA fragment can be cloned without compromising the cloning efficiency. The universal TA cloning method is thus both convenient and labor-saving.  相似文献   

11.
We have developed a novel polymerase chain reaction (PCR) method that permits the rapid generation of site-specific mutants and recombinant DNA constructs with a minimum number of steps and primers. DNA segments are modified by using amplifying primers that add homologous ends to the polymerase chain reaction product(s). These homologous ends undergo recombination in vivo following transformation of recA-E. coli strains used routinely in cloning. In vivo circularization of PCR products containing plasmid sequences with a selective marker permits the rapid cloning of the desired mutant or recombinant. In the mutagenesis protocol, 7 of the 12 clones contained the product of interest, and 6 of these clones had no detected error (50% of the clones without detected errors). In each of several recombination protocols, at least 50% of the clones tested contained the insert of interest without detected errors.  相似文献   

12.
Summary
A polymorphism was detected in the 3' untranslated region of the bovine gamma-S-crystallin gene by direct sequencing of polymerase chain reaction (PCR) products from genomic DNA of an N'Dama bull and a Boran cow. A set of three PCR primers was designed to detect this difference and thus give allele-specific amplification. The two allele-specific primers differ in length by 20 nucleotides so that the allelic products may be distinguished by simple agarose gel electrophoresis following a single PCR reaction. This provides a simple and rapid assay for this polymorphism.  相似文献   

13.
Gene synthesis is a convenient tool that is widely used to make genes for a variety of purposes. All current protocols essentially take inside-out approaches to assemble complete genes using DNA oligonucleotides or intermediate fragments. Here we present an efficient method that integrates gene synthesis and cloning into one step. Our method, which is evolved from QuikChange mutagenesis, can modify, extend, or even de novo synthesize relatively large genes. The genes are inserted directly into vectors without ligations or subcloning. We de novo synthesized a 600-bp gene through multiple steps of polymerase chain reaction (PCR) directly into a bacterial expression vector. This outside-in gene synthesis method is called Quikgene. Furthermore, we have defined an overlap region of a minimum of nine nucleotides in insertion primers that is sufficient enough to circularize PCR products for efficient transformation, allowing one to significantly reduce the lengths of primers. Taken together, our protocol greatly extends the current length limit for QuikChange insertion. More importantly, it combines gene synthesis and cloning into one step. It has potential applications for high-throughput structural genomics.  相似文献   

14.
We developed a novel method for synthesizing marker-disrupted alleles of yeast genes. The first step is PCR amplification of two sequences located upstream and downstream of the reading frame to be disrupted. Due to the addition of non-specific single A overhangs by Taq DNA polymerase, each PCR product can be ligated with a marker DNA which has T residues at its 3' ends. After amplification of individual ligation products through the second PCR, both products are mixed and annealed, and the single strand is converted to a double strand by an extension reaction. The final step is PCR amplification of the fragment composed of a selectable marker and two flanking sequences with the outermost primers. This method is rapid and needs only short oligonucleotides as primers.  相似文献   

15.
Gene splicing and mutagenesis by PCR-driven overlap extension   总被引:2,自引:0,他引:2  
Extension of overlapping gene segments by PCR is a simple, versatile technique for site-directed mutagenesis and gene splicing. Initial PCRs generate overlapping gene segments that are then used as template DNA for another PCR to create a full-length product. Internal primers generate overlapping, complementary 3' ends on the intermediate segments and introduce nucleotide substitutions, insertions or deletions for site-directed mutagenesis, or for gene splicing, encode the nucleotides found at the junction of adjoining gene segments. Overlapping strands of these intermediate products hybridize at this 3' region in a subsequent PCR and are extended to generate the full-length product amplified by flanking primers that can include restriction enzyme sites for inserting the product into an expression vector for cloning purposes. The highly efficient generation of mutant or chimeric genes by this method can easily be accomplished with standard laboratory reagents in approximately 1 week.  相似文献   

16.
一步3’RACE快速构建鸡MnSOD全长cDNA克隆Rapid   总被引:1,自引:0,他引:1  
卜友泉  罗绪刚  刘彬  李素芬 《遗传》2004,26(4):519-521
本研究尝试将触减 PCR与3’ cDNA末端快速扩增(rapid amplification of cDNA ends,RACE)技术进行结合,仅用一条特异性引物和一条通用引物,成功地实现了从3’末端cDNA库对鸡含锰超氧化物歧化酶(manganese-containing superoxide dismutase,MnSOD)全长cDNA的一步3’RACE快速构建。与常规使用的末端PCR或亚克隆方法相比,该法具有快速、省时、经济和特异性好的优点。Abstract: RACE(rapid amplification of cDNA ends) is a popular technique to rapidly obtain the full-length cDNA. After obtaining the 3’cDNA and 5’cDNA fragments with a overlapped region by 3’RACE and 5’RACE, the full-length cDNA could be generated by end-to-end PCR or subcloning. In this study, 3’RACE combined with touch-down PCR was successfully used for the rapid construction of full-length MnSOD cDNA of chickens. Compared with the conventional end-to-end PCR or subcloning, this method, called one-step 3’RACE, is fast, economical and highly specific. It especially fits the rapid construction of full-length cDNA by RACE method.  相似文献   

17.
Li J  Li C  Xiao W  Yuan D  Wan G  Ma L 《Analytical biochemistry》2008,373(2):389-391
A rapid site-directed mutagenesis strategy using homologous recombination and DpnI digestion of the template in Escherichia coli is described. Briefly, inverse polymerase chain reaction amplification of the entire circular plasmid was performed by mutagenic primers with overlapping sequences ( approximately 15 bp) for generating PCR products with approximately 15 bp of homology on the terminal ends. On direct transformation of the amplified PCR products into restriction endonuclease DpnI-expressing E. coli BUNDpnI, homologous recombination occurs in E. coli while the original templates are removed via DpnI digestion in vivo, thus yielding clones harboring mutated circular plasmids. Nearly 100% efficiency was attained when this strategy was used to modify DNA sequences.  相似文献   

18.
In this article, we describe a high-throughput cloning method, seamless enzyme-free cloning (SEFC), which allows one-step assembly of DNA fragments in vivo via homologous recombination in Escherichia coli. In the method, the desired open reading frame (ORF) is amplified by use of ORF-specific primers with flanking sequences identical to the two ends of a linearized vector. The polymerase chain reaction (PCR) product and the linearized vector are then cotransformed into E. coli cells, where the ORF is incorporated into the vector in vivo. SEFC is a simple, reliable, and inexpensive method of cloning in which PCR fragments are fused into expression vectors without unwanted amino acids or extra in vitro manipulations apart from the single PCR amplification step. Using this method, we successfully cloned human liver complete ORFs into the yeast AD and DB vectors and generated a clone resource of 4964 AD-ORFs and 4676 DB-ORFs in 3 months. This approach will be useful for daily DNA cloning and for creating proteome-scale clone resources.  相似文献   

19.
T-A cloning takes advantage of the unpaired adenosyl residue added to the 3' terminus of amplified DNAs by Taq and other thermostable DNA polymerase and uses a Ilnearlzed plasmld vector with a protruding 3' thymldylate residue at each of Its 3' termini to clone polymerase chain reaction (PCR)-derived DNA fragments. It Is a simple, reliable, and efficient Ilgatlon-dependent cloning method for PCR products, but the drawback of variable cloning efficiency occurs during application. In the present work, the relationship between variable T-A cloning efficiency and the different 5' end nucleotlde base of primers used In PCR amplification was studied. The results showed that different cloning efficiency was obtained with different primer pairs containing A, T, C and G at the 5' terminus respectively. The data shows that when the 5' end base of primer pair was adenosyl, more white colonies could be obtained In cloning the corresponding PCR product In comparison with other bases. And the least white colonies were formed when using the primer pair with 5' cytldylate end. The gluanylate end primers resulted In almost the same cloning efficiency In the white colonies amount as the thymldylate end primer did, and this efficiency was much lower than that of adenosyl end primers. This presumably is a consequence of variability In 3'dA addition to PCR products mediated by Taq polymerase. Our results offer instructions for primer design for researchers who choose T-A cloning to clone PCR products.  相似文献   

20.
从正常人外周血白细胞中提取基因组DNA,用PCR扩增神经生长因子(NGF)β亚基前体的全长编码区序列,将其克隆到T-vector(原始质粒为pBluescriptⅡSK(+))上,取两个独立的克隆采用自动测序仪进行双链DNA双向测序,结果表明:两个克隆的序列完全相同,该序列与国外报道的NGF序列有一个碱基的差别,从而导致NGF前导肽中一个氨基酸的改变,而成熟的NGF序列没有改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号